
CS664 – Compiler Theory and Design – LIU 1 of 4

Assignment 4
Tue Mar 1 (125 points)

For this assignment, we will use ANTLR to create a configuration file parser. Early
in the semester, I asked you to run a command-line tool to tell your Git installation
who you are:

git config --global user.name "YOUR NAME"

git config --global user.email "YOUR.ADDRESS@EXAMPLE.COM"

That information is stored with other configuration settings in a file ~/.gitconfig,
which looks like this:

[user]
name = YOUR NAME

email = YOUR.ADDRESS@EXAMPLE.COM

[color]
diff = auto

[core]
autocrlf = input

mergeoptions = --no-edit
[push]

default = matching

This is a fairly common configuration file format, sometimes called an “INI file.” The
format isn’t really standardized, so different tools have slightly different capabilities
and requirements.

Wewant to create a program that can read such files andmake their settings available
as a HashMap (dictionary) data structure. In themap, the section heading and variable
name are joinedwith a dot, so that the key push.default is set to the value matching:

HashMap<String,String> conf = readConf(".gitconfig");

conf.get("push.default"); // returns "matching"

conf.get("color.diff"); // returns "auto"

The basic structure of this readConf function is provided for you, because it relies
on the ANTLR grammar and a visitor to do the heavy lifting:

HashMap<String,String> readConf(String filename) throws IOException {

// Instantiate the lexer and parser generated by Config.g4

ANTLRInputStream input = new ANTLRInputStream(new FileReader(filename));

antlr.html

2 of 4 Prof. League – Spring 2016 – Assignment 4

ConfigLexer lexer = new ConfigLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

ConfigParser parser = new ConfigParser(tokens);

// Call our syntaxError method when there are parse errors

parser.addErrorListener(this);
// Instantiate the visitor

MapBuilder builder = new MapBuilder();

// Do the parse and then visit the tree with the MapBuilder.

parser.top().accept(builder);

// Return the HashMap containing the configuration data.

return builder.map;

}

So it will be your job to write the grammar and lexer rules in Config.g4, and to code
the MapBuilder as a subclass of the ANTLR-generated ConfigBaseVisitor.

Syntax and examples

A configuration file consists of one or more sections, each of which contains one or
more variable bindings. Sections begin with a name in brackets, on a line by itself:

[server-data2]

Both section and variable names are composed of one ormore alphabetic characters,
digits, the hyphen ‘-’, or the underscore ‘_’.

White-space on either side of an equal sign ‘=’ in a variable binding should be ignored.
That’s why user.name in the .gitconfig example:

name = YOUR NAME

has the value YOUR␣NAME (where we use ‘␣’ to represent a space character) and not
␣YOUR␣NAME. Section and variable bindings may also be indented any number of
spaces:

[user]
name=Carly

id=22419

[workspace]
geometry = 145x92+8+10

Importantly, spaces within a value are preserved, so in this file:

[message]
sig = Goodbye, world !

CS664 – Compiler Theory and Design – LIU 3 of 4

The value of message.sig should be Goodbye,␣␣␣world␣␣␣!.

Configuration files can have comments, which begin with a pound sign ‘#’ and run
to the end of the line. They appear, however, only on lines by themselves (possibly
indented). They cannot be used on lines that introduce sections or contain variable
bindings. Thus, the following file:

My account info

[user]
name=ralph

password=secret#123

The end!

defines two variables, user.name and user.password. The value of user.password
is secret#123. In other words, the #123 should be interpreted as part of the value of
the variable, not as an ignored comment.

Getting started

I provided a starting point in the assn4 directory in the cs664pub repository. A
mostly-empty grammar file is in src/main/antlr/Config.g4, and there are three
Java classes in src/main/java. To build it, open the Config.g4 and use Tools »
Generate ANTLR Recognizer. It will generate code into the gen/ directory. Then
you should be able to build using Build » Make Project.

The assn4 project contains a bunch of test cases in the test/ directory. There are
two types of files in there:

• .conf files are sample configuration files that your parser should be able to interpret.
• .datfiles are binary data files that contain the correctmapdata for the corresponding
configuration file.

The ConfigTest class contains a main method that invokes runAllTests. It looks
at each configuration file in the test/ directory, runs it through your parser and
MapBuilder, and tests your result against the expected one. At first, the output of
ConfigTest will be:

========= #1: 00-easy

line 1:0 token recognition error at: '['

line 1:1 token recognition error at: 'e'

line 1:2 token recognition error at: 'a'

[...]

actual: {}

expected: {easy.name=Alice}

FAIL

https://git.liucs.net/cs664s16/cs664pub/tree/master/assn4

4 of 4 Prof. League – Spring 2016 – Assignment 4

Figure 1: Test files

[...]

!!!!!!!!! 22 failures out of 22 tests

It’s full of “token recognition” errors because we haven’t given ANTLR any lexical
rules that would allow it to recognize any characters in the files.

You can begin working on a grammar and testing it with the built-in ANTLR Pre-
view panel. Once you get something partly working, regenerate the recognizers and
rebuild. Some of the syntax errors should disappear, but your MapBuilder is still
always returning the empty map.

Once you have eliminated all (or almost all) of the syntax errors, then work on im-
plementing the couple of methods in MapBuilder that will populate the map field in
response to visiting a variable binding. The syntax for adding a binding to the map
is:

map.put(key, value);

If you’re not using IntelliJ, I provided a build.gradle file that will run ANTLR to
generate the lexer, parser, and visitor code, and then build it with java. You can build
and run the ConfigTest class just by typing:

gradle run

in the project directory.

	Syntax and examples
	Getting started

