
CS664 – Compiler Theory and Design – LIU 1 of 4

Assignment 5
Tue Mar 22 (125 points)

For assignment 5, we will extend the calculator language and its type checker (de-
scribed in the type checking notes) in the following ways.

• We add Boolean values true and false to the language:

expr : …

| bool #BoolExpr

;

bool : 'true'

| 'false'

;

• We add a Boolean NOT operator (!) at the same precedence as numeric negation:

expr : op=('-'|'!') expr #NegExpr

| ...

• We add relational operators that compare numbers and produce a Boolean value:

expr : …

| left=expr op=('<'|'<='|'>'|'>=') right=expr #OpExpr

| …

• We add equality (=) and not-equals (<>) operators that can compare numbers or
Booleans, and produce a Boolean:

expr : …

| left=expr op=('='|'<>') right=expr #OpExpr

| …

• We add a conditional expression that takes three sub-expressions. If the first one
evaluates to true, it evaluates the second expression; otherwise it evaluates the third.

expr : …

| 'if' expr 'then' expr 'else' expr #IfExpr

| …

• We nowwill support implicit coercion from values of type INT to type FLOAT, which
means we no longer need the float() function to do that explicitly. We refer to INT
and FLOAT as numeric types. The BOOL type should not automatically convert to INT
or FLOAT. It is not a numeric type.

types.html

2 of 4 Prof. League – Spring 2016 – Assignment 5

Figure 1: Type hierarchy, useful for calculating the least upper bound of two types.

• We support the following functions:
– floor : (FLOAT) → INT

– sqrt : (FLOAT) → FLOAT

– log : (FLOAT, FLOAT) → FLOAT

where the log function takes the input number followed by the base of the logarithm.
So we would code log(35,2) for log2(35) ≈ 5.12928301694 or log(256,10) for
log10(256) ≈ 2.40823996531.

The above grammatical changes have already been made in src/main/antlr/Cal-
cLang.g4 in the assn5 project of the public repository. Your task is to update the
type checker to implement the typing rules appropriately. Specifically:

• Add a BOOL entry to the Type enumeration.

• Obviously, the values true and false should have type BOOL.

Γ ⊢ true : BOOL Γ ⊢ false : BOOL

• The numeric negation operator (unary -) should be applied only to numeric types,
not to Booleans. Conversely, the BooleanNOT operator (unary !) should be applied

https://git.liucs.net/cs664s16/cs664pub/blob/master/assn5/src/main/antlr/CalcLang.g4
https://git.liucs.net/cs664s16/cs664pub/blob/master/assn5/src/main/antlr/CalcLang.g4
https://git.liucs.net/cs664s16/cs664pub/tree/master/assn5

CS664 – Compiler Theory and Design – LIU 3 of 4

only to Booleans, not to numeric types. In each case, it does not change the type of
the operand.

Γ ⊢ e : INT

Γ ⊢ -e : INT

Γ ⊢ e : FLOAT

Γ ⊢ -e : FLOAT

Γ ⊢ e : BOOL

Γ ⊢ !e : BOOL

Note: the horizontal bar in this notation represents logical implication (also known
as ‘if-then’). The left-most rule is read “if the environment Γ (gamma) entails that
expression e has type INT, then the same environment entails that the expression -e

has type INT.”

• The five arithmetic operators (ˆ, *, /, +, -) work on any numeric operands, but not
Booleans. The result type is the least upper bound (LUB) of the two operand types.
So an INT plus an INT produces an INT, but a FLOAT plus an INT produces a FLOAT.
The typing rule shows the + operator, but the same rule applies to all five of them.

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ∈ {INT, FLOAT} τ2 ∈ {INT, FLOAT}

Γ ⊢ e1+e2 : LUB(τ1, τ2)

Note: in this rule, we’re using the Greek letter τ “tau” to represent one of our types,
and we use subscripts on τ and on e to distinguish between possibly-different types
and expressions. The least upper bound LUB(τ1, τ2) is determined from the type
hierarchy in the figure above.

• The four relational operators (<, <=, >, >=) work on any numeric operands, but not
Booleans; however the result type is always Boolean. The typing rule shows the <

operator, but the same rule applies to all four of them.

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ1 ∈ {INT, FLOAT} τ2 ∈ {INT, FLOAT}

Γ ⊢ e1<e2 : BOOL

Note: another way to specify τ ∈ {INT, FLOAT} is to write LUB(τ, FLOAT) = FLOAT.

• The two equality operators (=, <>) work on any compatible types, whether numeric
or Boolean. The result type is always Boolean. The typing rule shows the = operator,
but the same rule applies to both.

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 LUB(τ1, τ2) ̸= ERROR

Γ ⊢ e1=e2 : BOOL

• The first sub-expression in a conditional expression must have type BOOL, and the
types of the two branches must have a least upper bound that is not ERROR.

Γ ⊢ e1 : BOOL Γ ⊢ e2 : τ2 Γ ⊢ e3 : τ3 LUB(τ2, τ3) ̸= ERROR

Γ ⊢ if e1 then e2 else e3 : LUB(τ2, τ3)

• Here are the typing rules for the functions, using the least upper bound calculation
to allow implicit coercions.

4 of 4 Prof. League – Spring 2016 – Assignment 5

Γ ⊢ e : τ LUB(τ, FLOAT) = FLOAT

Γ ⊢ floor(e) : INT

Γ ⊢ e : τ LUB(τ, FLOAT) = FLOAT

Γ ⊢ sqrt(e) : FLOAT

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 LUB(τ1, LUB(τ2, FLOAT)) = FLOAT

Γ ⊢ log(e1, e2) : FLOAT

• The text files within the tests/ sub-directory represent test cases. You can run them
using the main program class TestTypeChecker. All of the files should parse cor-
rectly. The files in tests/bad contain type errors that your type checker should re-
port. The files in tests/good contain no type errors, so your type checker should
accept them. (The TypeCheckingVisitor increments its errors field each time the
error() method is called to report an error. So for all the files in tests/good we
expect errors == 0; and for all the files in tests/bad we expect errors > 0.)

