CS664 — Compiler Theory and Design - LIU 10f8

Assignment 7

Tue Apr 26 (125 points)

For this assignment, you will write code to translate a Calc parse tree into an interme-
diate representation, as defined below. Start with the assn7 project directory in the
cs664pub repository. It contains a working parser, type checker, and a substantial
number of test programs annotated with their expected outputs.

The test programs are in the src/test/resources/examples/run-expect directory.
For example, here is 011-add-many-ints.calc:

print 3+5+8+13+21+37+58; #expect 145

The jUnit test class in src/test/java/TestRunExpect. java loads each Calc test
program, compiles it, ensures it type-checks, and then applies your ConvertToIR
visitor. Once the IR is generated, it uses InterpretIR to run the compiled Calc pro-
gram, and ensure its outputs match the documented expectations.

Here is a synopsis of the structure of assn7:

+ src/main/antlr — thelocation of CalcLang.g4. Don't forget to run Tools » Gener-
ate ANTLR Recognizer. This time, we must configure the ANTLR tool to generate
its code into the calc.grammar package:

Auto-generate parsers upon save

Qutput directory where all output is generated

Location of imported grammars

Gramrmar file encoding; e.q., euc-jp

Package/namespace for the generated code calc.grammar
Language (e.g., Java, Python2, CSharp, ..)

generate parse tree |istener (default)

generate parse tree visitor

Figure 1: Set the package to calc.grammar in Tools » Configure ANTLR...

+ src/main/java — the primary modules of the compiler, including:
— Type — the enumeration representing all base types in Calc, as well as the ERROR
designation.
— TypeChecker and TypeCheckingVisitor — runs the lexer, parser, and type
checker, and counts any errors that occur.

20f8 Prof. League - Spring 2016 — Assignment 7

Address — represents operands in the IR, which may be constants, variables,
or temporaries.

Instruction — represents a single IR instruction. The Kind enumeration de-
fined within there denotes the instruction opcode. Instructions have a destina-
tion address and 0, 1, or 2 operand addresses.

BasicBlock — represents a sequence of straight-line IR instructions. For now
it’s just a thin interface around ArrayList, but as the language becomes more
advanced in assignment 8, it will take on additional responsibilities.
ConvertToIR — your work goes here. This is a CalcLangBaseVisitor that
traverses the parse tree and adds instructions to a BasicBlock object.
InterpretIR — Runs a basic block by interpreting each instruction. This is
useful for validating translations in the absence of a back end to compile the IR
to native code.

+ src/test/resources/examples — sample programs in the Calc language:

type-ok — programs that should parse and type-check without errors
type-err — programs that should parse but contain type errors

run-expect — programs that should parse and type-check but also contain
#expect annotations on each print statement.

+ src/test/java — jUnit classes to run unit tests, including:

TestTypeOk — ensures the test programs in type-ok parse and type-check.
TestTypeErr — ensures the test programs in type-err parse but produce type
errors.

TestNodeTypes — ensures the type-checker properly tracks the types of parse
tree nodes and notes implicit coercions.

TestRunExpect — parses, type-checks, and translates test programs in
run-expect, using ConvertToIR. Then it runs InterpretIR and compares the
results to the documented expectations. These will fail until you start making
progress on ConvertTolR.

FindTestPrograms — uses Java resource directories to locate the test programs.
TestUtils — other helper methods used by various test classes.

Compared to the implementation of the type checker in the assignment 5 solution,
the type checker for this assignment remembers the type assigned to every expres-
sion node in the parse tree. So given a node ctx (context object) derived from
CalcLangParser.ExprContext, we can call:

Type t1 = typeChecker.getNodeType(ctx);

to determine the type assigned to it by the type checker. This is helpful because the
IR needs to know the type of every temporary address.

In addition, whenever the type checker uses leastUpperBound to allow an implicit
conversion from INT to FLOAT, it remembers those too:

Type t2 = typeChecker.getCoercion(ctx);

CS664 — Compiler Theory and Design - LIU 30f8

If the returned type t2 is non-null, it means that the expression represented by node
ctx had to be promoted from type t1 to type t2. Such coercions can happen in any
operator, in a function argument, or in assigning to a variable.

Source language

The Calc language defined here supports only straight-line code; there are no
branches, loops, or user-defined functions. (We will add some of these features in
the next assignment.)

Values in the Calc language can be either strings, floats (double-precision), integers
(64-bit), or booleans. Integers may be automatically promoted to floats, but those
are the only implicit conversions.

Figure 2: Type hierarchy for Calc language used in this assignment

The syntax is partitioned into statements (executed for effects such as output or as-
signment to a variable) and expressions (executed to produce a value). Below is the
basic grammar; see src/main/antlr/CalcLang. g4 for full details.

prog : (stmt ';')+

stmt : 'var' ID '=' expr #VarStmt

| ID '='" expr #AssignStmt

| 'print’ expr #PrintStmt
expr : op=C'-"|"!") expr #NegExpr

| <assoc=right> left=expr op='"' right=expr #OpExpr

| left=expr op=(C'*"|"'/"|"'%") right=expr #OpExpr

| left=expr op=('+'|'-") right=expr #OpExpr

| left=expr op=('<'|'<="|'">"|'>=") right=expr #OpExpr

| left=expr op=('='|'<>") right=expr #OpExpr

I

left=expr op='&"' right=expr #OpExpr

40f8 Prof. League - Spring 2016 — Assignment 7

| left=expr op='|"' right=expr #OpExpr

| ID '(" expr ('," expr)x ')’ #FunExpr

| (" expr ")’ #ParenExpr
| INT #IntExpr

| FLOAT #FloatExpr
| STR #StringExpr
| ID #VarExpr

| bool #BoolExpr

There are two kinds of statements related to variables, VarStmt and AssignStmt. The
var keyword introduces a new variable. Its type is determined from the expression
which initializes it. Without the var keyword, we are assigning to an existing variable
that must have already been declared.

var x = 6; # x:int

X = 6.28; # error, won’t convert float to int

var y = 3.14; # y:float

y = 3; # okay because int<float

var y = 9; # New var y:int shadows previous one
y = 9.87; # error, won't convert float to int

Line 5 is an example of an automatic promotion from int to float. So if ctx5e refers
to the IntExprContext object representing that constant 3 in the parse tree, we'd
have:

Type.INT == typeChecker.getNodeType(ctx5e)
Type.FLOAT == typeChecker.getCoercion(ctx5e)

But in the constant 9 on line 7, there is no promotion. So if ctx7e refers to that
IntExprContext object, we'd have:

Type.INT == typeChecker.getNodeType(ctx7e)
null == typeChecker.getCoercion(ctx7e)

Typing rules for the operators are mostly as before. We added the " exponent oper-
ator, which works on floats or ints (if the exponent is non-negative). The + operator
is also expected to concatenate strings:

var name = "Chris”;
print "Hello, " + name; #expect Hello, Chris

CS664 — Compiler Theory and Design - LIU 50f8

Here are several built-in functions that are useful for creating sample programs:

floor: (FLOAT) — INT

sqrt: (FLOAT) — FLOAT

log : (FLOAT, FLOAT) — FLOAT
parseInt: (STRING) — INT
parseFloat : (STRING) — FLOAT
showInt: (INT) — STRING
showFloat : (FLOAT) — STRING
readLine: () — STRING

random: () — FLOAT

And a sample program to calculate the volume of a sphere, given its radius:

var pi = 3.14159;
var ratio = 4.0/3;

print "Enter sphere radius:”;
var radius = parseFloat(readLine());

var volume = ratio * pi * radius”3;
print "The sphere volume is " + showFloat(volume);

Intermediate representation

Our intermediate language supports the same set of types: STRING, BOOL, FLOAT,
and INT, although we now treat booleans as being equal to the integers 0 (false) and
1 (true). We use that to implement logical AND in terms of integer multiplications:
0x1==0 for false & true. The boolean negation (NOT) can also be implemented in
terms of integer subtraction: 1-x for !x.

Otherwise, the IR doesn’t support any implicit conversions from int to float. They
must be made explicit using the I2F instruction.

Address

Addresses serve as the operands and destinations of instructions in the IR. They rep-
resent either variables (memory locations, VAR), constants (CONST), or temporaries
(TEMP). They also keep track of the type of data they contain.

public class Address {
enum Kind {
VAR, CONST, TEMP

60f8 Prof. League - Spring 2016 — Assignment 7

Kind kind;
Type type;
String value;
int serialNum;

Address(Type type)

{..}

Address(Kind kind, Type type, String value)
{..}

There are two constructors. One creates a fresh, new temporary of the given type.
The other is used to construct addresses representing constants or variables.

Instruction

An instruction performs some action, specified by its kind. It has a destination ad-
dress and zero, one, or two operand addresses, depending on the kind of instruction
being represented.

public class Instruction {
enum Kind {..}
Kind kind;
Address destination;
ArrayList<Address> operands = new ArraylList<Address>();

Instruction(Kind kind, Address destination) {..}
Instruction(Kind kind, Address destination, Address source) {..}
Instruction(Kind kind, Address destination, Address left, Address right) {..}

The destination address must be a temporary, except in a few cases: for a PRINT
instruction, it should be null. For a STORE instruction, the destination address should
be a variable.

Operand addresses can be either variables, temporaries, or constants. The kind of

instruction determines the number of operands needed and what types are accept-
able.

Here are brief descriptions of all the kinds of instructions:

ADD — takes two operands of the same numeric type, adds them.
DIV — takes two operands of the same numeric type, divides them. For integers, this
means integer division (the result is also an integer).

EQ — takes two operands of the same type, compares them for equality, returns a
boolean.

CS664 — Compiler Theory and Design - LIU 7 of 8

F2S — takes one float operand, converts it to a string.

FLOOR — takes one float operand, converts it to an int by rounding down.

I2F — takes one integer operand, converts it to a float.

I12S — takes one int operand, converts it to a string.

LE — takes two operands of the same numeric type, returns boolean if first is <=
second.

LOG — takes two float operands, calculates log with base.

LT — takes two operands of same numeric type, returns boolean if first is strictly <
second.

MOD — takes two integer operands, returns modulus.

MUL — takes two operands of the same numeric type, multiplies them. Also can be
used for logical and of boolean values.

NE — inverse of EQ

OR — takes two boolean values and performs logical or.

POW — takes two operands of the same numeric type, calculates the first to the power
of the second. If operands are integers, second operand must be non-negative.
PRINT — takes operand of any type, prints its result to the output stream.

RANDOM — takes no operands, returns a random float >= @ and < 1.

READLINE — takes no operands, reads one line from input stream and returns it as a
string with newline character removed.

S2F — takes one string operand and attempts to convert it to a float. It’s a run-time
error if it cannot be converted.

S2I — takes one string operand and attempts to convert it to an int. It’s a run-time
error if it cannot be converted.

SCONCAT — takes two string operands and returns a new string in which the two
operands are concatenated.

SQRT — takes one float operand and produces its square root as a float.

STORE — takes one operand of any type. Copies it into the destination operand, which
is permitted to be a variable address.

SUB — takes two operands of the same numeric type, subtracts them.

BasicBlock

A basic block is just a sequence of straight-line IR instructions, stored in an
ArraylList collection. The BasicBlock class has an add() method to append a new
instruction at the end of the block. Here is an example where we build up an IR
program directly using Java code, and then interpret it.

Address al = new Address(Type.FLOAT);
Address a2 = new Address(Type.FLOAT);
Address a3 = new Address(Type.STRING);
Address a4 = new Address(Type.STRING);

Address pi = new Address(Address.Kind.CONST, Type.FLOAT, "3.14159");

80f8 Prof. League - Spring 2016 — Assignment 7

Address two = new Address(Address.Kind.CONST, Type.INT, "2");
Address mesg = new Address(Address.Kind.CONST, Type.STRING, "PI*2 is ");

BasicBlock block = new BasicBlock();

block.add(new Instruction(Kind.I2F, al, two));
block.add(new Instruction(Kind.POW, a2, pi, al));
block.add(new Instruction(Kind.F2S, a3, a2));
block.add(new Instruction(Kind.SCONCAT, a4, mesg, a3));
block.add(new Instruction(Kind.PRINT, null, a4));

System.out.println(block);
InterpretIR interpreter = new InterpretIR();
ArrayList<String> output = new ArraylList<>();

interpreter.run(block, output);
System.out.println(output);

And the output of that program is:

FLOAT t1 = I2F(INT 2)

FLOAT t2 = POW(FLOAT 3.14159, FLOAT t1)

STRING t3 = F2S(FLOAT t2)

STRING t4 = SCONCAT(STRING PI*2 is , STRING t3)
PRINT(STRING t4)

[PI*2 is 9.869588e+00]

For the sake of consistency, our programs will print all floating-point values in sci-
entific notation with six digits after the decimal point. This corresponds to "%.6e"
in Java’s String. format() method, or "%.61e" with C’s printf.

	Source language
	Intermediate representation
	Address
	Instruction
	BasicBlock

