CS664 — Compiler Theory and Design - LIU 10f4

Assignment 8
Fri May 6 (125 points)
This is an extension of Assignment 7. We're building a compiler for the Calcu-
lator language. Previously, we supported only straight-line code, so we could
accumulate every instruction into one basic block. Now we will extend the lan-

guage with if statements and while loops. There are several new test cases in
src/test/resources/examples/run-expect

Source language

The changes to the source language are all in the stmt grammar:

| 'while' expr 'do’ stmt #WhileStmt
| '"if' expr 'then' stmt #IfStmt

| '"if' expr 'then' stmt ';' 'else' stmt #IfElseStmt
| 'begin’' prog 'end'’ #BlockStmt

Here are a few simple examples of their usage:

var x = 3;

if x < 4 then print "Yes"; #expect Yes
print x; #expect 3
if x < 2 then print "Cool”; #no output
print "Ok"; #texpect Ok

An example with compound statements (begin/end):

var d = 8;
if d > 5 then #true
begin
print "Okay"; #expect Okay
if d < 10 then #true
begin
print d; #expect 8
print "Yup"; #expect Yup
d=d - 2;
end;
print d; #expect 6
if d > 7 then #false
print "Woo"; #no output
end;

print d+1; #expect 7



20f4 Prof. League - Spring 2016 — Assignment 8

And a program that calculates the factorial of 20:

var n = 20;

var k = 1;
while n > @ do
begin
k = k *x n;
n=n-1;
end;
print k; #texpect 2432902008176640000

The begin/end introduces a new scope, so here’s an example where the variable x
gets shadowed twice, but then is restored after each end.

var x = "Hello";
begin
var x = 5;
begin
var x = 3.14;
print x; #expect 3.140000e+00
end;
print x; #expect 5
end;
print x; #expect Hello

IR implementation

To support implementing these conditional and loop statements, we have extended
the intermediate representation as follows.

In addition to constants, variables, and temporaries, the Address class can now also
represent labels to which control can be transferred. To construct a label, just call
the constructor with no arguments:

Address label = new Address();

Like temporaries, labels are represented by a serial number, and they appear prefixed
by an L in the output. Below is an example of one of the sample programs, translated
into the IR.

var x = 3; L391:
if x < 4 then print "Yes"”; INT vx30@ = STORE(INT 3)
print x; BOOL t392 = LT(INT vx30, INT 4)

if x < 2 then print "Cool”; BRANCH(BOOL t392, L394, L393)



CS664 — Compiler Theory and Design - LIU 30f4

print "Ok"; L393:
PRINT(STRING Yes)
JUMP(L394)
L394:
PRINT(INT vx30)
BOOL t395 = LT(INT vx3@, INT 2)
BRANCH(BOOL t395, L397, L396)
L396:
PRINT(STRING Cool)
JUMP(L397)
L397:
PRINT(STRING 0Ok)
END()

That example also demonstrates several new instructions: BRANCH, JUMP, and END:

The BRANCH instruction takes a boolean address and two labels. If the boolean is zero
it jumps to the first address, if it’s one it jumps to the second.

The JUMP instruction is an unconditional jump, so it takes just one label and transfers
control there.

The END instruction indicates the end of the program. Previously, the program ended
when we reached the end of the basic block. Requiring END gives us flexibility in the
ordering of basic blocks in the program... we don’t need to arrange for the last block
to appear last.

Unlike in most assembly languages, we don’t allow control to “fall through” the end
of one block into the start of the next one. Every basic block should end with either
BRANCH, JUMP, or END so there is no ambiguity about what to do next. Again, this is
to allow flexibility in block ordering.

The ConvertToIR visitor now keeps an object of type IRGraph rather than
BasicBlock. The IRGraph is a map from label numbers to basic blocks —
here is the essence of the class:

class IRGraph implements Iterable<Integer> {
private final TreeMap<Integer, BasicBlock> graph = new TreeMap<>();
private BasicBlock block;

public void newBlock(Address label) {
block = new BasicBlock();
add(label, block);

void add(Address label, BasicBlock bb) {
assert label.kind == Address.Kind.LABEL;
graph.put(label.serialNum, bb);



40f4 Prof. League - Spring 2016 — Assignment 8

void add(Instruction instr) {
block.add(instr);

It keeps track of the current block, to which you can add new instructions. But it
also allows you to create a new block, making that one the current block. Here’s an
example of using the methods of IRGraph to terminate the current block with a jump
to the next one:

// We're already in some current block

// Generate label for the new block

Address label = new Address();

// Add an instruction to jump to that label
graph.add(new Instruction(Instruction.Kind.JUMP, label));

// Now we switch to the new block
graph.newBlock(label);
// Further instructions will be in the new block
graph.add(new Instruction(Instruction.Kind.PRINT,

new Address(Address.Kind.CONST, Type.INT, "42")));
graph.add(new Instruction(Instruction.Kind.END));

And here’s a representation of what that Java code would generate:

L100:
JUMP(L101)
L101:
PRINT(INT 42)
END()

Finally, to support nested scopes of variables in begin/end blocks, we now use a
SymbolTable data structure, rather than a simple map to keep track of variable
names. We covered this representation of a symbol table in the online session on
March 23rd (recording available). It features enter() and leave() methods to
support a stack of scopes.



	Source language
	IR implementation

