CS664 — Compiler Theory and Design - LIU 10f5

Intermediate representations

Christopher League*
6 April 2016

We are working our way down through the innards of the compiler. Having studied
parsing and type checking, we now look at intermediate representations (IR). In a
typical compiler, the program being compiled will go through these different repre-
sentations:

. Source text

. Parse tree

. Abstract syntax tree

. Intermediate representation
. Target/object code

The transformations leading up to the IR are collectively called the front end of the
compiler. The transformation from the IR to the object code (whether native or just
another programming language) is called the back end. Most other optimizations
take place on the IR. We can study some examples later on.

Sometimes important transformations take place in the conversion from parse tree
to abstract syntax tree. These are known as syntactic sugar — syntactic elements
that make programs easier to read, but don'’t really add new capabilities. For exam-
ple, the language Perl has a control construct called unless which is essentially the
inverse of an if statement:

unless(expression) {
block

if (! (expression)) {
block
3

This sort of transformation is easy to implement in the AST. By doing so, there is one
fewer control statement to worry about translating when we reach the IR.

“Syntactic sugar causes cancer of the semi-colons.”
Alan Perlis, Epigrams on Programming, SIGPLAN Notices 17(9), 1982

One big benefit of a well-defined IR is that we can develop different front ends to
support different source languages, and different back ends to generate code for dif-
ferent machine architectures or target languages.

*Copyright 2016, some rights reserved (CC by-sa)


http://dl.acm.org/citation.cfm?doid=947955.1083808

20f5 Prof. League - Spring 2016 - Intermediate representations

C C++ Java Fortran Obj-C Ada
IR
4N

x86 ARM AMD64 JIVM C

Figure 1: Compiler infrastructure with a common IR

The infrastructure diagram shows C as both a source language and a target language.
It’s fairly common for high-level language compilers to use a subset of C as a ‘portable
assembler; and then invoke a standard C compiler to continue the work and generate
native code. This minimizes the amount of work needed to produce a new compiler
that can target different machine architectures.

Other popular examples of compiler systems with a common IR are:

The LLVM Compiler Infrastructure http://11vm.org/ — “a collection of modular
and reusable compiler and toolchain technologies [...] built around a well specified
code representation known as the LLVM IR “It is particularly easy to invent your
own language (or port an existing compiler) to use LLVM as an optimizer and code
generator”

The SUIF Compiler System http://suif.stanford.edu/ — developed at Stanford
University and primarily used as a research tool to study optimization and analysis
techniques.

The GNU Compiler Collection https://gcc.gnu.org/

The Microsoft Common Compiler Infrastructure http://research.microsoft.

com/en-us/projects/cci/

Three-address code

The IR in a typical compiler is pretty low-level, like a portable assembly language or
abstract machine code. It does not feature a wide variety of data structures, and does
not support nested control structures as a source language would.

A common type of IR is known as a three-address code, so called because most
instructions support three operands: one for the output and two for the inputs. In
this instruction:

X 1= 3 *y;


http://llvm.org/
http://suif.stanford.edu/
https://gcc.gnu.org/
http://research.microsoft.com/en-us/projects/cci/
http://research.microsoft.com/en-us/projects/cci/

CS664 — Compiler Theory and Design - LIU 30f5

The two input operands (aka addresses) are the constant 3 and the variable y. The
one output address is the variable x. Here is an equivalent instruction written in the
syntax of the LLVM IR:

%x = mul 132 3, %y

In that version, the multiply is designated by the opcode mul, and local variables
are prefixed with %. The 132 is needed because multiplication is actually a different
operation depending on the types of the operands. So 132 specifies multiplication
on 32-bit integers, but LLVM also supports types like 116, f32 (32-bit float), 64, and
so on.

In a three-address code, the operands can refer to named global or local variables,
numeric constants, or they can be temporaries. A temporary isjust a way to designate
a value whose storage destination hasn't been determined yet. It will be the job of
the compiler back end to determine whether each temporary can be stored in a CPU
register or somewhere in system memory, such as the stack or heap. This process is
called register allocation.

In LLVM, temporaries are also designated by the percent sign, but they use numbers
instead of alphabetic names:

%2 = mul i32 3, %y
%3 = mul i32 %2, 8
%4 = sub 132 %3, %2

The above sequence of instructions calculates 3*xy*8-(3xy), where it stores all inter-
mediate values into temporaries (%2, %3, %4) and does not recalculate 3*y (an opti-
mization called common sub-expression elimination).

Flattening

In the intermediate representation, nested arithmetic expression trees must be flat-
tened into a linear sequence of instructions. This is relatively straightforward using
a bottom-up left-to-right traversal of the expression tree. Let’s consider the tree for
the expression 17*2+x*(1+b) "y+x*8"2, as shown.

As we visit each OpExpr node, we allocate a new temporary variable (by just using
an integer counter), then emit the operator instruction using the addresses (tempo-
raries, variables, or constants) provided by that node’s left and right children. Here
is the resulting 3-address code:

t1 17 = 2
t2 := 1+ b
t3 1= t2 4y



40of 5 Prof. League - Spring 2016 - Intermediate representations

expr:l||1tExpr * expr:lrl'ntExpr expr:VIarExpr *}9{:5{{1 expr:l||1tExpr ~ expr:lr|1tExpr

17 2 X expr:ParenExpr ~ expr:VarExpr 8 2

( expr:OpExpr ) y

expr:ntExpr + expr:VarExpr

1 b

Figure 2: Expression tree for 17x2+x*(1+b) "y+x*8"2 in the Calc language

t4 := x % t3
t5 := t1 + t4
t6 := 8 * 2
t7 := x * t6
t8 := t5 + t7

(We've assumed that the exponentiation operator * is built in to our intermediate
representation. On some systems, we would need to compile it as a call to a function
like pow() in C’s math.h library.)

Conditional execution

Flattening the tree becomes a little more difficult when there are conditional or it-
erative computations. Consider this Calc-language statement that could be part of a
program to calculate the Collatz sequence:

y = if n%2=0 then x/2 else 3xx+]

(We're using the % sign for the modulus operator.)

tl = n% 2 # if-expression
t2 := t1 eq @
ifZ t2 L1 # if t2 is zero, jump to label L1
t3 ;= x/ 2 # then-expression
t6 := t3
jump L2
L1: t4 := 3 % X # else-expression
th = t4 + 1
t6 := t5

L2: y :=t6 # assignment (after then or else)


https://en.wikipedia.org/wiki/Collatz_conjecture

CS664 — Compiler Theory and Design - LIU 50f5

Basic block

Within an IR, a sequence of ‘straight-line’ instructions is called a basic block. For-
mally, a basic block has just one entry (the first instruction in the block) and one exit
(the last instruction).

TODO: examples and exercises for splitting code into basic blocks.



	Three-address code
	Flattening
	Conditional execution
	Basic block

