
CS664 – Compiler Theory and Design – LIU 1 of 11

Formal LanguageTheory
Christopher League*

20 January 2016

Languages and automata

Defining languages

A language is a (possibly infinite) set of strings, where a string is a sequence of sym-
bols (characters) from some alphabet. The alphabet is usually designated by the
Greek uppercase Σ (sigma). For example, sequences of binary digits are drawn from
Σ = {0, 1} and base ten integers have Σ = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (the negation
sign and all ten numerals).

We can characterize infinite language informally using English descriptions, or by
set notation and abusing the ellipses (…), as in these examples:

• L0 is the set of strings from Σ = {a, b} where the sequence ab is repeated one or
more times. E.g., L0 = {ab, abab, ababab, abababab, . . .} but aba ̸∈ L0.

• L1 is the set of bit strings (from Σ = {0, 1}) that end in the sequence 101. E.g., L1 =

{101, 0101, 1101, 00101, 01101, 10101, 11101, . . .} but 1010 ̸∈ L1.
• L2 is the set of strings consisting ofNa’s followed byNb’s whereN ≥ 0. WhenN =

0 this is the empty string, usually designated with the Greek lowercase ϵ (epsilon).
E.g., L2 = {ϵ, ab, aabb, aaabbb, aaaabbbb, . . .} but aabbb ̸∈ L2.

• L3 is the set of base ten representations of natural numbers that are multiples of 3.
E.g., L3 = {0, 3, 6, 9, 12, 15, 18, 21, . . .} but 20 ̸∈ L3.

• L4 is the set of base ten representations of natural numbers that are prime. E.g.,
L4 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .} but 28 ̸∈ L4.

• L5 is the set of strings consisting of matched parentheses or brackets. E.g., Σ = { (,
), [, ] } and L5 = {ϵ, (), [], ([]), [()], (()), [[]], ([]()), . . .} but ([)] ̸∈ L5.

Can we come up with a finite, formal characterization of languages like these? What
if we had a well-defined ‘machine’ of some sort that, given any string, can determine
whether the string is in the language. In other terms, the machine recognizes or
accepts strings in the language, and it rejects any strings not in the language.

Finite State Automata

The type of machine we’ll start with is called a Finite State Automaton (FSA). If the
term automaton is unfamiliar, just think of machine or device; the plural form is
automata. Below is an example of an FSA for the language L0.

*Copyright 2016, some rights reserved (CC by-sa)



2 of 11 Prof. League – Spring 2016 – Formal Language Theory

Figure 1: FSA for L0

The circles are states, and the arrows are transitions. The state labeled S is the start
state, and the double-circle is an accept or final state. The arrows are labeled with
the character that is consumed when you make that transition.

So it works like this: Given a string, let’s sayabab, we keep track ofwhat statewe’re in
and then consume characters one at a time. Each character corresponds to following
one of the arrows from the current state. So the first a moves us from S to X. The
next character is b so we move from X to Y. Now we’re in an accept state, so if this
was the end of the string, it would be in the language L0. But since there are more
characters we continue. The second a moves us back to X and the final b moves
us to Y. We’re back in the accept state and at the end of the string, so the string is
recognized by the FSA and therefore it is in the language L0.

Now, consider some things that can go wrong. What if we encounter a character
for which there is no outgoing arrow from the current state? For example, trace the
same FSA with the string aab. The first a takes you to state X, but from there we
don’t have an outgoing arrow for the second a. Therefore we’re stuck and the string
is rejected: aab ̸∈ L0.

Another type of rejection is when we reach the end of the string, but we’re not in the
final state. Trace the FSA with the string aba. You’ll get to the end of the string, but
end up in state X which is not a final state. Therefore aba ̸∈ L0.

Non-deterministic FSA

Now let’s try to build an FSA for the next sample language, L1. The simplest way to
approach it is to build a non-deterministic FSA. The start state is S, and from there
we have self-transitions on 0 or 1, back to state S. That means we can – at first – have
any number of 0’s and 1’s. But to get to the final state Z, we need the string to end
with 101.

We can see that the automaton is non-deterministic because, from state S if we see a
1, there are two choices! Do we follow the loop and stay in S, or do we move instead
to X? Consider the string 1101. On the first 1 if we move to X then it appears we’re
stuck trying to match the second 1. The correct way to match this string is to take
the loop for the first 1 and move to X on the second 1.

The way non-deterministic FSAs are interpreted is that the string is accepted if there
is any path that leads to the final state. But when using themachine, how dowe know
which transitions to take? The strings could be arbitrarily long and complex, so we
could have many false starts and have to backtrack.



CS664 – Compiler Theory and Design – LIU 3 of 11

Figure 2: Non-deterministic FSA for L1

Fortunately (and maybe surprisingly), any non-deterministic FSA can be converted
to a deterministic FSA. The number of states may increase substantially, but it will
still be constant relative to the length of the input string.

The conversion algorithm is somewhat intuitive. Starting from the start state, con-
sider each possible input from Σ. On a 0 we stay in S. But on a 1, there are two
possibilities: we can end up in either S or X. So we create a new, union state called
SX and let that be the target of 1. Continue from SX: if I’m in either S or X, what are
all the possibilities when I see a 0? Well, if it was S I would stay put, but if I was in
X I would move to Y. So the new union state is SY. Now, from SX what are all the
possibilities when I see a 1? Well from state X I would be stuck so I can ignore that.
But from state S I could be in either S or X. So there is a loop on a 1 from SX to SX.

Figure 3: Deterministic FSA for L1

Once you consider all possible transitions from these union states, you make any
state that includes Z an accept state – in this example there is just one, but it’s possi-
ble the non-deterministic accept state could be a member of multiple deterministic
union states.



4 of 11 Prof. League – Spring 2016 – Formal Language Theory

Implementing FSAs

It’s straightforward to implement a deterministic FSA in any programming language.
Just keep track of the state and loop through the characters. Here is a Java program
that implements the FSA for L0.

public class FSA_L0 {

enum State { S, X, Y };

static boolean runFSA(String buffer) {

State state = State.S; // Start state

for(int position = 0; position < buffer.length(); position++) {

char current = buffer.charAt(position);

switch(state) {

case S:

if('a' == current) state = State.X;

else return false; // Stuck

break;
case X:

if('b' == current) state = State.Y;

else return false; // Stuck

break;
case Y:

if('a' == current) state = State.X;

else return false; // Stuck

break;
}

}

return state == State.Y; // Are we in accept state?

}

public static void main(String[] args) {

if(args.length > 0) { // Try strings provided on command line

for(String arg : args) {

System.out.println

((runFSA(arg)? "ACCEPT" : "REJECT") + ": " + arg);

}

}

else { // Built-in test cases

assert(runFSA("ab"));

assert(runFSA("abab"));

assert(runFSA("ababab"));

assert(!runFSA("a"));

assert(!runFSA(""));

assert(!runFSA("aba"));

assert(!runFSA("baba"));



CS664 – Compiler Theory and Design – LIU 5 of 11

System.out.println("Tests pass.");

}

}

}

We invoke it like this:

% java FSA_L0 ab abc abb aba abab

ACCEPT: ab

REJECT: abc

REJECT: abb

REJECT: aba

ACCEPT: abab

% java FSA_L0

Tests pass.

Exercises

1. Create a non-deterministic FSA to recognize the language L6, the set of strings from
Σ = {a, b, n} that begin with ba and end with na. For example, it should accept
bana, banana, babbna but not banba.

2. Convert the non-deterministic FSA from the previous exercise into a deterministic
FSA. Try it on the same strings.

3. Create a deterministic FSA to recognize the language L3, the natural numbers that
are multiples of 3. I’ve provided an incomplete starting point below that accepts
{0, 3, 6, 9, 12, 15, 18, 21}. As a shorthand, I’ve labeled arrowswithmore than one digit
to indicate that any of those digits will follow that arrow. You should expand the given
FSA so it works for anynumber in the infinite setL3. Surprisingly, you shouldn’t need
more states, just more arrows. One observation that makes this possible is that the
sum of the digits of a number that is a multiple of 3 is also a multiple of 3. So we can
tell that 236,529 is a multiple of 3 because 2 + 3 + 6 + 5 + 2 + 9 = 27 and 27 is a
multiple of 3. (Which we can, in turn, tell because 2+ 7 = 9 is a multiple of 3.)

4. Using the same technique as in the Java program above, implement your determin-
istic FSA from exercise 2. (You can use Java or C/C++.)

Chomsky Hierarchy

When we try to create an FSA for L2, we run into trouble. Recall that L2 requires
a sequence of a’s followed by a sequence of b’s, but those sequences must have the
same length. So aabb ∈ L2 but aaabb ̸∈ L2. We can design an FSA that requires a



6 of 11 Prof. League – Spring 2016 – Formal Language Theory

Figure 4: Incomplete FSA for L3 and exercise 3

Figure 5: Candidate FSA for L2 (doesn’t work)



CS664 – Compiler Theory and Design – LIU 7 of 11

sequence of a’s followed by a sequence of b’s, but it won’t be able to count that we’re
getting the same number of a’s and b’s.

The candidate FSA accepts everything in L2, but it fails to reject some strings that
are not in L2, such as aaabb.

Because strings in the language can be arbitrarily long, we cannot keep track of
lengths using a constant number of states. There is an expansion of FSAs called
push-down automata (PDA) that addresses this problem. In addition to the states
and transitions, push-down automata use a stack where you can push or pop data on
each transition. So if we push each a as we encounter it, then when we transition to
b’s we can pop an a for each b. If the stack is empty when we get to the end of the
string, then the counts matched.

PDAs are strictly more powerful than FSAs – they can recognize more languages. In
this way, definable languages can be placed into a hierarchy based on the power of
the machine needed to recognize them. This is called the Chomsky Hierarchy, after
linguist Noam Chomsky described it in his book Syntactic Structures in 1957.

• Type 0 = Recursively enumerable languages, recognizable by Turing Machine
• Type 1 = Context-sensitive languages, recognizable by a linear-bounded automaton
• Type 2 = Context-free languages, recognizable by PDA
• Type 3 = Regular languages, recognizable by FSA

Types 2 and 3 are of the most interest to us, in studying programming languages
and compilers. Programming languages are usually defined to be context-free, and
tokens (like a number, string, or identifier) are regular.

Regular expressions

Regular languages show up in many computer programs in the form of regular ex-
pressions, also known as regexes. A regular expression is a type of pattern that can
be used to search or match text. They are essential to the command-line tool grep
and built in to the syntax of languages like Perl and Javascript.

We won’t cover regular expressions in great detail here, but suffice to say that a dot
. matches any single character, a * is a post-fix operator that matches zero or more
occurrences of the preceding character or group, and [abc]matches any single char-
acter from the set {a, b, c}. So the regular expression c.lo*[rn] would match colr,
colon, color, coloon, calr, calon, czloooor but not colour or caloot.

The set of strings matched by a regular expression forms a regular language. There-
fore any regular expression can be translated to an FSA, and in fact this is often
how they are implemented. Supposing that Σ = {a, b, c, . . . , z}, here is an FSA that
matches c.lo*[rn]. The Σ label on one of the arrows means you can make that
transition on any character in Σ.



8 of 11 Prof. League – Spring 2016 – Formal Language Theory

Figure 6: FSA for the regular expression c.lo*[rn]

Exercises

5. Convert the regular expression [cdf]([aoeui][tgr])* to an FSA. As in arithmetic,
the parentheses group together elements of the regex so the * operator applies to the
whole group. Some strings that match this expression are c, cat, dog, dig, cator,
cigar, firet, caterer, and forager.

Grammars

Another tool for characterizing languages is a grammar. The common notation is
called Backus-Naur Form (BNF) named after the early programming language de-
velopers John Backus and Peter Naur. A grammar consists of a set of terminals and
non-terminals, and production rules that determine how sequences of them can be
transformed into other sequences. In the treatment below, we’ll use lowercase letters
for terminals and uppercase for non-terminals, but other typographical treatments
are sometimes used too.

This is a grammar for a subset of simple English sentences. Thenon-terminal S stands
for sentence, but it’s also the starting rule. Read the bar character | as “or” – it intro-
duces an alternative to the rule above.

S ::= NP VP

NP ::= NOUN

| ADJ NP

VP ::= VERB

| VP ADV

NOUN ::= dog

| idea

| pizza

ADJ ::= green

| mean

| tasty



CS664 – Compiler Theory and Design – LIU 9 of 11

VERB ::= sleeps

| eats

| learns

ADV ::= furiously

| studiously

| quickly

The above grammar can be used to generate all sorts of strange quasi-English sen-
tences, like “tasty green pizza learns quickly” and “mean dog sleeps.”

To generate a sentence, start with an S and then expand it using any of the avail-
able rules where S appears on the left side of ::=. There is only one, so the first layer
transforms S into NP VP. Now, for NP there are two choices – do we want some adjec-
tives or just a noun by itself? As you continue expanding non-terminals, the process
naturally constructs a tree where the leaves are the terminals in your final sentence.

The inverse problem is called parsing. That is, given a sentence that we suspect is in
the language, what grammar rules would be invoked to generate that sentence? Or
in other terms, given the sentence how do we construct the tree?

Let’s try to create a grammar to characterize the language L2, which we learned was
not regular. Its strings contain a sequence of a’s followed by the same number of b’s.
The grammar is actually quite simple.

S ::= �

| aSb

Thestart non-terminal S can either transform to an empty string, or it can recursively
become an S surrounded by an a on the left and a matching b on the right. This
ensures we generate the same number of as as bs.

The grammars above are context-free. You can easily tell this because the left-hand
side of each ::= is just a single non-terminal. If we allow terminals on either side of
the non-terminal (all on the left side of ::=), then the rule can only be applied when
in a matching context, so the grammar is context-sensitive.

Here’s a small example of a context-sensitive grammar. It recognizes a language from
Σ = {a, b, c} where there are sequences of as, then bs, and then cs all with the same
number of characters.

S ::= aSBc (rule 1)

| abc (2)

cB ::= Bc (3)

bB ::= bb (4)



10 of 11 Prof. League – Spring 2016 – Formal Language Theory

Figure 7: Parse tree for an English sentence



CS664 – Compiler Theory and Design – LIU 11 of 11

Figure 8: Parse tree for the L2 string aaabbb

Notice how the left side of the ::= in two of the rules contains a terminal. Thatmeans
the B can only be expanded one way if there is a c to its left, and a different way if
there is a b to its left. Below is a derivation that generates a string in the language.

S ⇒ aSBc (rule 1)⇒ aaSBcBc (1)⇒ aaabcBcBc (2)⇒ aaabBccBc (3)⇒ aaabbccBc (4)⇒ aaabbcBcc (3)⇒ aaabbBccc (3)⇒ aaabbbccc (4)

Exercises

6. Using the English-like grammar above, draw the parse tree for the sentence “mean
idea eats furiously quickly.”

7. TheEnglish-like grammar doesn’t support subject-verb agreement. Supposewewish
to add plural nouns like dogs/ideas/pizzas and plural verbs like sleep/eat/learn. Re-
vise and extend the grammar to ensure subject-verb agreement, so that “dogs eat”
and “dog eats” are in the language, but not “dogs eats” or “dog eat”. Your grammar
should continue to support the same adjectives and adverbs.

8. Write a context-free grammar corresponding to the language L5 consisting of strings
of matched parentheses. Using your grammar, draw the parse tree for ([]()).


	Languages and automata
	Defining languages
	Finite State Automata
	Non-deterministic FSA
	Implementing FSAs
	Exercises

	Chomsky Hierarchy
	Regular expressions
	Exercises

	Grammars
	Exercises


