
CS664 – Compiler Theory and Design – LIU 1 of 2

Lexical analysis
Christopher League*

27 January 2016

• Lexical analyzer = lexer = scanner = tokenizer. First phase of compilation.
• It converts a stream of characters into a stream of ‘tokens’.
• A token (= lexeme) is an atomic unit of syntax. It includes things like identifiers,
numbers, keywords, punctuation, and strings.

• Here’s an example of how a bit of C/C++/Java code would be tokenized:

for(int i = 0; i < source.length(); i++) {

– FOR (each keyword is usually a distinct token)
– LPAREN

– ID(int) (built-in types are usually not distinct tokens, we just record this as an
identifier)

– ID(i) (also an identifier; parser will distinguish between the type and variable
name in a declaration)

– EQ

– NUM(0)

– SEMI

– ID(i)

– LT or maybe OP(<) (sometimes it’s more convenient to group together all kinds
of operators under one token type, OP)

– ID(source)

– DOT

– ID(length)

– LPAREN

– RPAREN

– SEMI

– ID(i)

– OP(++)

– RPAREN

– LBRACE

• The lexer doesn’t care about making sure all the parts of the for loop are present,
that parentheses and braces match, or that variables are declared. Those are the job
of the parser and type-checker (syntactic and semantic analysis).

• Tokens may also record the position (line and column numbers) in the source where
they were found. This helps pinpoint error messages later in compilation.

*Copyright 2016, some rights reserved (CC by-sa)



2 of 2 Prof. League – Spring 2016 – Lexical analysis

• Lexers for most languages discard white-space right away, so there is no token for
spaces. (Exceptions might be languages like Python or Haskell where indentation is
significant to the syntax.)

• Lexers for most languages also discard comments, because they’re not needed any
further by the compiler. (Exceptions might be languages which type-check or eval-
uate expressions within the documentation.)

• Sometimes we have to “look ahead” further into the source before we know what
token to emit. A very common way this happens is when some tokens are prefixes of
others, such as the keyword for and the identifier form. While looking at the f we
don’t know yet whether this will produce FOR or ID(form). Similarly with operators
that overlap like < and <=.

• Lexical rules can be categorized by the number of characters we may need to “look
ahead” in order to resolve such ambiguities.

– A language that is LL(1) only needs to consider one character ahead.
– A language that has to disambiguate identifiers and keywords might be LL(6)

because, for example, the longest keyword is 6 characters.
– Wecan useLL(k) to refer to languages that need a constant look-ahead, without

having to specify what it is.
– Finally LL(∗)means an unbounded look-ahead: wemight have to look arbitrar-

ily far into the source.
• Pattern 2 in the book, Language Implementation Patterns, is about implementing a
so-called recursive-descent lexer for an LL(1) language.

• Following this technique, I implemented a lexdemo project to tokenize expressions in
a “list language” — see the README.md for examples. In the src directory, the classes
Token and ListLexer are both well-documented, so you can learn more about the
technique by reading the code and comments.

• As lexers and parsers get more complicated, we use tools called lexer generators to
produce them. The generator takes a specification (often using regular expressions)
of the lexical structure of the language, and outputs the code to tokenize it. Examples
of lexer generators are Lex, Flex, and ANTLR.

• We’ll learn to use ANTLR a little later, but for now we’ll hand-code an LL(1) lexer in
Assignment 2.

https://git.liucs.net/cs664s16/cs664pub/tree/master/lexdemo
https://en.wikipedia.org/wiki/Lex_(software)
https://en.wikipedia.org/wiki/Flex_(lexical_analyser_generator)
http://www.antlr.org/
a2.html

