
CS664 – Compiler Theory and Design – LIU 1 of 4

Compilers Overview
Christopher League*

20 January 2016

What is a compiler?

Early machines were programmed painstakingly in bits, entered using octal or hex-
adecimal. For example, look at the PDP-8 or PDP-11 console: switches grouped into
threes that made it easy to enter octal numbers directly into memory. (Eventually
these machines could also connect to tape drives and teletypes for more convenient
data and code entry.)

Entering numbers directly is inconvenient and error-prone, so we started creating
assemblers. An assembler is a program to translate text op-codes into binary. For
example, here is a document showing hexadecimal numbers (such as B7 80 04) next
to corresponding text op-codes (STA A ACIA).

Figure 1: Hexadecimal encoding of Motorola 6802 assembly language

The assembly language is especially convenient because it can figure out relative and
absolute offsets for jumps and data using text labels (like INITA and CTLREG). How-
ever, the statements themselves are just a 1:1 mapping of machine instructions – no
higher-level abstractions.

So the audacious idea of the compiler is to allow programmers to write higher-level
code – closer to the problem domain, and more natural notation – and have a pro-
gram translate it automatically into assembly or machine code.

*Copyright 2016, some rights reserved (CC by-sa)

https://upload.wikimedia.org/wikipedia/commons/8/8c/Digital_pdp8-e2.jpg
http://retrotechnology.com/pdp11/11_panel_2.jpg


2 of 4 Prof. League – Spring 2016 – Compilers Overview

One of the absolute pioneers in compilers is Grace Hopper, who designed the lan-
guages MATH-MATIC (a predecessor of FORTRAN) and FLOW-MATIC (a prede-
cessor of COBOL). She actually coined the term ‘compiler’ for this type of software.
You absolutely should read the introduction and text of her keynote address to the
History of Programming Languages conference in 1978.

• Introduction to Grace Hopper’s keynote by Jean Sammet
• Keynote address by Grace Hopper

(These links are to the ACMDigital Library; you can download them when on cam-
pus or if you are an ACMmember.)

Hopper fought a lot of entrenched attitudes about how computers ‘should’ be pro-
grammed: “In the early years of programming languages, the most frequent phrase
we heard was that the only way to program a computer was in octal. Of course a few
years later a few people admitted that maybe you could use assembly language.”

Compiler structure

Most compilers today aremulti-phase, multi-pass systems. Bymulti-phase,wemean
that the source goes through several layers of analyses and transformations before
emitting the target or object code. The results of those phases are themselves lan-
guages, usually referred to as intermediate languages or intermediate representations
(IR).

The compiler errors you see generally come from three (sometimes four) distinct
phases, although they are not always identified that way.

• A lexical error refers to something wrong with splitting your program into tokens.
For example, if you forget a closing quote " character on a string, or you use an en-
tirely invalid character (some languages only support the ASCII character set, for
example).

• A syntax error refers to something wrong with the tree structure of your program.
These are very common errors, like missing semi-colons, mismatched parentheses
or braces, extra commas, etc.

• A semantic error (or type error) happens when you have undeclared identifiers or
the types of operands don’t match, such as trying to add an integer and a string.

The next three phases don’t typically output error messages unless there’s a bug in
the compiler. There is a fourth source of errors, but it’s part of the linker, which is
logically a separate tool (depending on the language and platform). The linker takes
multiple chunks of object code and merges them together into a single executable.
If there are conflicting definitions or missing definitions, those show up as linker
errors.

http://dl.acm.org/citation.cfm?id=1198340&CFID=576965718&CFTOKEN=11204396
http://dl.acm.org/citation.cfm?id=1198341&CFID=576965718&CFTOKEN=11204396


CS664 – Compiler Theory and Design – LIU 3 of 4

Figure 2: Grace Hopper

Figure 3: Compiler phases



4 of 4 Prof. League – Spring 2016 – Compilers Overview

I also said that most compilers today are multi-pass. That means they load source
language file into memory and can go back and forth within the file. Early compilers,
back when memories were small, were designed to type-check, translate, and gener-
ate code by just making one pass through the file. This is why some older languages
like C require forward declarations before you call a function but newer languages
like Java or Haskell can declare and call functions in any order.

int square(int x); // Forward declaration (prototype)

void main() {

printf("%d\n", square(90));

}

int square(int x) { // Function definition

return x*x;

}

Compilers don’t necessarily output object (machine) code. Instead, the target lan-
guage could just be another programming language. For example, the first versions
of C++ were implemented as a translator to plain C code. Also there are plenty of
new languages whose compilers target Javascript so they can run in web browsers.


	What is a compiler?
	Compiler structure

