
CS664 – Compiler Theory and Design – LIU 1 of 6

Parsing and grammars
Christopher League*

3 February 2016

Today we’ll study parsing and understand better how the lexer and parser interact.
Throughout we’ll use a tiny language for calculations similar to the Unix bc program
– an arbitrary-precision calculator. Here is a first cut at the grammar:

• prog→ prog stm ;

• prog→ ε
• stm→ ID = expr
• stm→ print expr
• expr→ expr + expr
• expr→ expr - expr
• expr→ expr * expr
• expr→ expr / expr
• expr→ (expr)
• expr→ NUM

• expr→ ID

So a program is a sequence of statements, each statement terminated by a semi-
colon. The tree below illustrates how the two ‘prog’ rules can be applied to generate
(or parse) that sequence.

Ambiguity

The expression rules are ambiguous. A grammar is unambiguous if every string in
the language has a unique parse tree. But if we can generatemore than one parse tree
for the same string, the grammar is ambiguous. Below are some trees for expressions
that illustrate ambiguity.

Top-down vs bottom-up

The two basic parsing strategy are top-down and bottom-up:

• Top-down means we start from some root non-terminal and use the sequence of
tokens to identify which grammar rules to apply. Top-down parsers are written using
a technique called recursive descent, and are not that difficult to write by hand.

*Copyright 2016, some rights reserved (CC by-sa)

2 of 6 Prof. League – Spring 2016 – Parsing and grammars

Figure 1: Parse tree for three semicolon-terminated statements using left-recursive
grammar

Figure 2: Twodifferent parse trees (left-associative and right-associative) for the same
sequence of operations

CS664 – Compiler Theory and Design – LIU 3 of 6

• Bottom-up means we start from the sequence of tokens, and with each token decide
whether to shift the token into a waiting buffer, or reduce the current buffer by ap-
plying a rule from the grammar. In this way, the tree is built bottom-up. So-called
shift-reduce parsers are extremely tedious to write by hand. In practice, they will be
generated by a tool like “yacc” or its variants.

Left recursion

One of the properties of a grammar that causes problems for recursive descent pars-
ing is left recursion.

Each non-terminal (on the left side of an arrow ‘→’) in the grammar is implemented
as a (possibly recursive) method. That method tries to distinguish between which
rules to apply, based on the sequence of tokens. Then it calls othermethods to handle
each terminal and non-terminal on the right side of the ‘→’.

In our sample grammar, both the ‘prog’ and ‘expr’ rules are quite obviously left-
recursive:

• prog→ prog stm ;

• expr→ expr + expr

That means a recursive descent approach would immediately create an infinite loop,
as illustrated in the Java methods we’d derive from the above rules.

void parseProg() {

parseProg(); // Uh-oh, unbounded recursion!

parseStm();

match(SEMI);

}

void parseExpr() {

parseExpr(); // Uh-oh, unbounded recursion!

match(PLUS);

parseExpr();

}

There are other ways left-recursion can happen that are not as obvious as these. For
one, you could have two rules that aremutually recursive:

• blip→ glop ;

• glop→ blip .

Another more subtle source of left-recursion can happen when rules are nullable,
that is, they can reduce to the empty string, ‘ε’:

4 of 6 Prof. League – Spring 2016 – Parsing and grammars

• luke→ han luke
• han→ void

• han→ ε

Because the non-terminal ’han’ is nullable, ’luke’ ends up being able to recursively call
‘luke’without consuming any tokens – that’s the formal definition of left recursion.

Removing ambiguities and left recursion

There are a couple of techniques and heuristics that can be applied to the grammars
of most programming languages in order to remove ambiguity and left recursion.
Here is a rewrite of the original grammar for the calculator language, using those
techniques.

• prog→ stm ; prog
• prog→ ε
• stm→ ID = add-expr
• stm→ print add-expr
• add-expr→mult-expr + add-expr
• add-expr→mult-expr - add-expr
• add-expr→mult-expr
• mult-expr→ base-expr *mult-expr
• mult-expr→ base-expr /mult-expr
• mult-expr→ base-expr
• base-expr→ (add-expr)
• base-expr→ NUM

• base-expr→ ID

This grammar flips around the prog rule, so that it’s right-recursive instead of left.
This generates a different parse tree than before, but it doesn’t really matter – the
sequence of statements is still the same.

Furthermore, the precedence and associativity of all the arithmetic operators are en-
coded into the grammar. Every string in the language has a unique parse tree speci-
fied by these rules, so it’s no longer ambiguous.

Update: unfortunately, although the above grammar is unambiguous and avoids left
recursion, it also makes the operators right-associative. This can cause unexpected
behavior for subtraction and division. For example, 10-2-3 produces the tree shown
below, whose value will be 10-(2-3) = 10-(-1) = 11. The expected behavior is for
operators to be left-associative, so then we would get (10-2)-3 = 8-3 = 5.

The subscripts next to non-terminal names in the tree indicate which grammar rule
was applied for that non-terminal. For example, add-expr₂ indicates the rule that
produces the subtraction operator and add-expr₃ converts directly to amult-expr.

CS664 – Compiler Theory and Design – LIU 5 of 6

Figure 3: Parse tree for three semicolon-terminated statements using right-recursive
grammar

There are algorithms that can take a right-associative parse tree and rewrite it to be
left-associative. When we use a parser generator such as ANTLR or Bison, they can
take care of associativity for you.

6 of 6 Prof. League – Spring 2016 – Parsing and grammars

Figure 4: Parse tree for right-associative subtraction

	Ambiguity
	Top-down vs bottom-up
	Left recursion
	Removing ambiguities and left recursion

