CS664 — Compiler Theory and Design - LIU 10f6

Parsing and grammars

Christopher League*
3 February 2016

Today we’ll study parsing and understand better how the lexer and parser interact.
Throughout we’ll use a tiny language for calculations similar to the Unix bc program
— an arbitrary-precision calculator. Here is a first cut at the grammar:

*

prog — prog stm ;

e prog — ¢

o stm — ID = expr

» stm — print expr

» exXpr — expr + expr
e exXpr — expr - expr
e eXpr — expr * expr
+ expr — expr / expr
» expr — (expr)

» expr — NUM

o expr — ID

So a program is a sequence of statements, each statement terminated by a semi-
colon. The tree below illustrates how the two ‘prog’ rules can be applied to generate
(or parse) that sequence.

Ambiguity

The expression rules are ambiguous. A grammar is unambiguous if every string in
the language has a unique parse tree. But if we can generate more than one parse tree
for the same string, the grammar is ambiguous. Below are some trees for expressions
that illustrate ambiguity.

Top-down vs bottom-up
The two basic parsing strategy are top-down and bottom-up:

+ Top-down means we start from some root non-terminal and use the sequence of
tokens to identify which grammar rules to apply. Top-down parsers are written using
a technique called recursive descent, and are not that difficult to write by hand.

*Copyright 2016, some rights reserved (CC by-sa)

20f6 Prof. League - Spring 2016 - Parsing and grammars

Figure 1: Parse tree for three semicolon-terminated statements using left-recursive
grammar

Figure 2: Two different parse trees (left-associative and right-associative) for the same
sequence of operations

CS664 — Compiler Theory and Design - LIU 30f6

Bottom-up means we start from the sequence of tokens, and with each token decide
whether to shift the token into a waiting buffer, or reduce the current buffer by ap-
plying a rule from the grammar. In this way, the tree is built bottom-up. So-called
shift-reduce parsers are extremely tedious to write by hand. In practice, they will be
generated by a tool like “yacc” or its variants.

Left recursion

One of the properties of a grammar that causes problems for recursive descent pars-
ing is left recursion.

Each non-terminal (on the left side of an arrow ‘—’) in the grammar is implemented
as a (possibly recursive) method. That method tries to distinguish between which
rules to apply, based on the sequence of tokens. Then it calls other methods to handle
each terminal and non-terminal on the right side of the ‘—'

In our sample grammar, both the ‘prog’ and ‘expr’ rules are quite obviously left-
recursive:

prog — prog stm ;
€xpr — expr + expr

That means a recursive descent approach would immediately create an infinite loop,
as illustrated in the Java methods we'd derive from the above rules.

void parseProg() {
parseProg();
parseStm();
match(SEMI);

void parseExpr() {
parseExpr();
match(PLUS);
parseExpr();

There are other ways left-recursion can happen that are not as obvious as these. For
one, you could have two rules that are mutually recursive:

blip — glop ;
glop — blip .

Another more subtle source of left-recursion can happen when rules are nullable,
that is, they can reduce to the empty string, ‘¢”:

40f6 Prof. League - Spring 2016 - Parsing and grammars

luke — han luke
han — void
han — ¢

Because the non-terminal "han’ is nullable, 'luke’ ends up being able to recursively call
‘luke’ without consuming any tokens — that’s the formal definition of left recursion.

Removing ambiguities and left recursion

There are a couple of techniques and heuristics that can be applied to the grammars
of most programming languages in order to remove ambiguity and left recursion.
Here is a rewrite of the original grammar for the calculator language, using those
techniques.

prog — stm ; prog

prog — €

stm — ID = add-expr

stm — print add-expr

add-expr — mult-expr + add-expr
add-expr — mult-expr - add-expr
add-expr — mult-expr

mult-expr — base-expr * mult-expr
mult-expr — base-expr / mult-expr
mult-expr — base-expr

base-expr — (add-expr)
base-expr — NUM

base-expr — ID

This grammar flips around the prog rule, so that it’s right-recursive instead of left.
This generates a different parse tree than before, but it doesn’t really matter — the
sequence of statements is still the same.

Furthermore, the precedence and associativity of all the arithmetic operators are en-
coded into the grammar. Every string in the language has a unique parse tree speci-
fied by these rules, so it’s no longer ambiguous.

Update: unfortunately, although the above grammar is unambiguous and avoids left
recursion, it also makes the operators right-associative. This can cause unexpected
behavior for subtraction and division. For example, 10-2-3 produces the tree shown
below, whose value will be 10-(2-3) = 10-(-1) = 11. The expected behavior is for
operators to be left-associative, so then we would get (10-2)-3 =8-3 =5.

The subscripts next to non-terminal names in the tree indicate which grammar rule
was applied for that non-terminal. For example, add-expr, indicates the rule that
produces the subtraction operator and add-expr; converts directly to a mult-expr.

CS664 — Compiler Theory and Design - LIU 50of6

Figure 3: Parse tree for three semicolon-terminated statements using right-recursive
grammar

There are algorithms that can take a right-associative parse tree and rewrite it to be
left-associative. When we use a parser generator such as ANTLR or Bison, they can
take care of associativity for you.

60f6 Prof. League - Spring 2016 - Parsing and grammars

add-exprz

mult-exprs
@ add-exprs

base-exprz
base-exprz
Y 4
NUM(1@) - NUM(2) - NUM(3)

Figure 4: Parse tree for right-associative subtraction

	Ambiguity
	Top-down vs bottom-up
	Left recursion
	Removing ambiguities and left recursion

