
CS664 – Compiler Theory and Design – LIU 1 of 8

Register allocation
Christopher League*

4 May 2016

• IR uses potentially large number of program variables and temporaries.
• Machine supports small number of registers (very fast storage).
• Mapping variables/temporaries to registers is called register allocation.
• If not all vars/temps can be allocated to registers, we spill one or more of them to
main memory (much slower storage).

• Variety of algorithms and variations:
– Chaitin (1982), based on graph-coloring (NP complete)
– George, Appel (1996), iterated register coalescing
– Poletto & Sarkar (1999), linear scan register allocation

• All these rely on liveness analysis, a backwards data flow analysis.
– Calculates the set of variables that are live at every point in program.
– A variable is live if it holds a value that may be needed in the future.
– For each statement s, define Gen(s) as the set of variables used in s before any

assignment.
– Define Kill(s) as the set of variables assigned a value in s.
– Start at the exit node, where the set of live variables is empty, and work

backwards.
– For each statement, calculate Liveout(s) as the union of Livein(t) for each

successor t.
– Then calculate Livein(s) = Gen(s) ∪ (Liveout(s) − Kill(s)).
– When the program has loops, you may need to iterate a few times until all sets

converge.

• Once we calculate Live sets, build an undirected graph where nodes are
temporaries and edges indicate interference: two temporaries that are live at the
same time.

– Can also add preference edges (dotted lines) that indicate a preference for
keeping two temporaries in the same register.

– Preference edges are especially useful for reducing moves in ϕ statements:
t1 = ϕ(t2, t3) will generate preferences that t1 = t2 and t1 = t3.

– Register allocation corresponds to a coloring of the interference graph.
– Greedy algorithm for coloring: start with the highest-degree node and

choose its register. Eliminate that register as a candidate from all of its
neighbors. Repeat.

*Copyright 2016, some rights reserved (CC by-sa)



2 of 8 Prof. League – Spring 2016 – Register allocation

Figure 1: Program graph in SSA form with if-then statement



CS664 – Compiler Theory and Design – LIU 3 of 8

Figure 2: Results of liveness analysis for program in figure 1



4 of 8 Prof. League – Spring 2016 – Register allocation

Figure 3: SSA program graph with loop and if-else



CS664 – Compiler Theory and Design – LIU 5 of 8

Figure 4: Results of liveness analysis for program in figure 3



6 of 8 Prof. League – Spring 2016 – Register allocation

Figure 5: Interference graph for program in figures 1, 2

Figure 6: Interference graph with preference edges for program in figures 1, 2



CS664 – Compiler Theory and Design – LIU 7 of 8

Figure 7: Interference graph for program figures 3, 4



8 of 8 Prof. League – Spring 2016 – Register allocation

Figure 8: Interference graph with preference edges for program figures 3, 4


