
CS664 – Compiler Theory and Design – LIU 1 of 5

Symbol tables
Christopher League*

23 March 2016

We use the term symbol to refer to any name that is used in a program. A sym-
bol can refer to a type, a function, a variable, a built-in operation, or other things
depending on the language. It is more-or-less interchangeable with the term identi-
fier, although sometimes identifier implies that it’s alphanumeric, whereas a symbol
could potentially be any sequence of characters. For example, main is both an iden-
tifier and a symbol in a C++ program. The operator ++ might be a symbol too, but
we don’t necessarily call it an identifier because it’s not alphanumeric.

Scope

In programming languages, the scope of a symbol refers to the portion of a program
where that name can be referenced. Here are some examples to help us understand
the scope of identifiers in different languages.

C++ example

1 const int n = 15;

2 void blip(float i)

3 {

4 char n = floor(i) % 256;

5 cout << i << n << endl;

6 }

7 int main()

8 {

9 for(int i = 0;

10 i < n;

11 i++)

12 {

13 float k = sqrt(i);

14 cout << i << blip(k) << endl;

15 }

16 return 0;

17 }

• Which lines comprise the scope of n1?
• Which lines comprise the scope of n4?

*Copyright 2016, some rights reserved (CC by-sa)

2 of 5 Prof. League – Spring 2016 – Symbol tables

• Which lines comprise the scope of i2?
• Which lines comprise the scope of i9?
• Which lines comprise the scope of k?
• Which lines comprise the scope of blip?
• Which lines comprise the scope of main?

SQL example

1 SELECT *

2 FROM product AS p

3 , invoice_item AS i

4 WHERE i.product_id = p.id;

5

6 INSERT INTO product (name, price)

7 VALUES ('SQL for Dummies', 13.99);

• Which lines comprise the scope of p?
• Which lines comprise the scope of i?
• Which lines comprise the scope of product?

Java

1 static boolean isEven(int n)

2 {

3 return n == 0 || isOdd(n-1);

4 }

5

6 static boolean isOdd(int n)

7 {

8 return n == 1 || isEven(n-1);

9 }

• Which lines comprise the scope of n1?
• Which lines comprise the scope of n6?
• Which lines comprise the scope of isEven?
• Which lines comprise the scope of isOdd?

Tree structure

In most languages, different scopes can be properly nested within one another — in
other words, they form a tree. Here is the same C++ program we examined earlier,
but with annotations to indicate where the scope of each symbol begins (‘enter’) and
ends (‘leave’).

CS664 – Compiler Theory and Design – LIU 3 of 5

1 const int n = 15;

2 void blip(float i) // ENTER n1

3 { // ENTER blip, i2

4 char n = floor(i) % 256;

5 cout << i << n << endl; // ENTER n4

6 } // LEAVE n4, i2

7 int main()

8 { // ENTER main

9 for(int i = 0;

10 i < n; // ENTER i9

11 i++)

12 {

13 float k = sqrt(i);

14 cout << i << blip(k) << endl; // ENTER k

15 } // LEAVE k, i9

16 return 0;

17 } // LEAVE blip, n1

We never leave one of the outer (parent) scopes without having left its inner (child)
scopes. If we did, the enter/leave annotations would look like:

1 // ENTER a (parent)

2 // ENTER b (child)

3 // LEAVE a (parent)

4 // LEAVE b (child)

Another way to think of properly nested scopes is that they obey a stack discipline.
We push child scopes on top of their parents, and then when we leave each scope we
pop them last-in first-out (from inner to outer).

Symbol table

In the compiler, we will need a data structure that can track information about a
symbol. The most common information we need to track about variables and func-
tions is their types. For example, in the C++ program above we would need to know
that n1 is an integer constant, and n4 is a character variable.

We may also track other information such as the values of constants, the allocation
strategy (where to find this value when we need it), the location of the declaration in
the source code, etc.

For simple languages with monolithic scope, (everything is in the same scope), we
can just use a standard map implementation, like Java’s HashMap. These tend to be
implemented as hash tables or balanced binary trees. In the type-checker for the
calculator language, we just used HashMap<String,Type> to map variable names to
their types.

types.html#symbol-table
types.html#symbol-table

4 of 5 Prof. League – Spring 2016 – Symbol tables

Figure 1: Tree representation of nested scopes in the C++ program.

CS664 – Compiler Theory and Design – LIU 5 of 5

But for languages with nested scopes, it’s a little more complex. In addition tometh-
ods get and put to (respectively) read and write symbol information, we need to be
able to enter and leave scopes. (These are sometimes also called push and pop, as a
nod to the stack discipline.)

In the online session, we defined a scope-respecting SymbolTable class that supports
methods get, put, enter, and leave. It is defined using a Stack of HashMaps.

https://git.liucs.net/cs664s16/cs664pub/blob/master/symtable/src/SymbolTable.java

	Scope
	C++ example
	SQL example
	Java

	Tree structure
	Symbol table

