
CS664 – Compiler Theory and Design – LIU 1 of 11

Interpreters and trees
Christopher League*

10 February 2016

Interpreters

Compilers and interpreters, of course, have a lot to do with programming languages.
We have at least three roles for languages:

• The source language is the language that the compiler or interpreter takes as input.
• The target language is the language the compiler outputs. (Interpreters don’t have

a target language.)
• The host language is the language the compiler or interpreter is written in.

Things get interesting when the source language and host language are the same.
For example, a C compiler that is written in C or a Java virtual machine (a low-level
interpreter) written in Java. Such systems raise the question “what compiles the com-
piler?” This leads to a process calledbootstrapping, which is fraughtwith complexity
– we may discuss it in more depth later.

Identifying these three roles also allows us to easily distinguish between a compiler
and an interpreter. With a compiler, once we have produced the target code it can
executewith nomore involvement from the host language. In contrast, with an inter-
preter the host language’s runtime system is active and directly involved in executing
the source program.

One decision point in creating an interpreter is the level of processing at which we
begin interpreting. It’s rare to interpret directly from the character string represent-
ing the source program. Instead, we might run the lexical analyzer and interpret a
sequence of tokens – that’s called a syntax-directed interpreter (pattern 24, chapter
9 in the book). Or we might do a full parse in advance and then interpret from the
parse tree or abstract syntax tree (pattern 25).

The advantage of doing lexical analysis and (possibly) parsing before interpreting is
especially evident in code with loops. When we iterate through the same piece of
code many times, it would be wasteful to re-discover the same sequence of tokens
(or the same tree structure) each time through.

*Copyright 2016, some rights reserved (CC by-sa)

http://dl.acm.org/citation.cfm?id=197336
http://dl.acm.org/citation.cfm?id=358210


2 of 11 Prof. League – Spring 2016 – Interpreters and trees

Writing Pico programs

Related to assignments 2 and 3, it’s helpful to understand a little better how Pico-
Script works by writing programs in it. In class, I proposed writing a PicoScript pro-
gram to calculate Collatz sequences. Starting with any integer n > 0, we produce
the next integer as follows. If n is even, divide it by two. If n is odd, then calculate
3n + 1. The numbers in the sequence can oscillate wildly up and down, but with
every starting integer ever tried the sequence leads to the number 1. However, there
is still no formal proof that the sequence terminates for every integer.

In PicoScript we have a mod operator that can be used to distinguish even or odd:

7 2 mod % [1]

8 2 mod % [0]

and then we can apply 0 eq to turn those into Booleans:

7 2 mod 0 eq % [false]

8 2 mod 0 eq % [true]

Now we have the ifelse operator that can take a Boolean and two blocks of code.
It uses the Boolean to decide which block to execute. So in one block, we divide by
two (integer division with idiv) and in the other we use 3 mul 1 add to calculate
3n+ 1.

7 2 mod 0 eq {2 idiv} {3 mul 1 add} ifelse % Error: stack underflow

The problem that happened here is that the original integer, 7, gets consumed as
soon as you calculate its modulus.

So we need to dup the number before we apply the 2 mod so that a copy of it is still
around when we want to divide or multiply:

7 dup 2 mod 0 eq {2 idiv} {3 mul 1 add} ifelse % [22]

Here’s the same code, but starting with an even number:

10 dup 2 mod 0 eq {2 idiv} {3 mul 1 add} ifelse % [5]

So this is the core logic of any Collatz program. We can use it either to generate the
whole sequence from some starting point, or to count how long it takes to reach the
end. Either way, let’s define it as a new operator:

https://en.wikipedia.org/wiki/Collatz_conjecture


CS664 – Compiler Theory and Design – LIU 3 of 11

/collatzRule {

dup 2 mod 0 eq
{2 idiv}
{3 mul 1 add}

ifelse
} def

Here are some more examples of applying it:

31 collatzRule % [94]

161 collatzRule % [484]

122 collatzRule % [61]

32 collatzRule % [16]

Now we want to loop it somehow, to generate the sequence. PicoScript has a few
loop operators, but the while is a convenient one in this case. If the number is greater
than one, we keep going. Again, we need to use dup at the beginning of each block
to prevent it from consuming our only copy of the current number.

/collatzSeq {

{dup 1 gt}
{dup collatzRule}

while

} def

17 collatzSeq % [17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]

27 collatzSeq % [27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214,

% 107, 322, 161, 484, 242, 121, 364, 182, 9, 274,

% 137, 412, 206, 103, 310, 155, 466, 233, 700,

% 350, 175, 526, 263, 790, 395, 1186, 593, 1780,

% 890, 445, 1336, 668, 334, 167, 502, 251, 754,

% 377, 1132, 566, 283, 850, 425, 1276, 638, 319,

% 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

% 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

% 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154,

% 577, 1732, 866, 433, 1300, 650, 325, 976, 488,

% 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53,

% 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1]

Now suppose that instead of generating the whole sequence, we only need to know
its length. To achieve that we’ll use a similar while loop but keep the current Collatz
number on the top of the stack, and the number of steps we’ve taken just below that.



4 of 11 Prof. League – Spring 2016 – Interpreters and trees

/collatzLength {

0 exch % Initialize number of steps taken

{ dup 1 gt } % Have we reached 1 yet?

{ collatzRule % Generate next number (but don't keep current one)

exch 1 add exch % Increment number of steps taken

}

while % Loop the above procedures

pop % Pop the final 1, leaving only the count

} def

32 collatzLength % [5]

27 collatzLength % [111]

63728127 collatzLength % [949]

Tree representations

Much of the work of a compiler is analyzing and rewriting trees. So the data struc-
tures and implementation patterns we use for trees are very important. There are
two general kinds of trees that represent the source program:

• A parse tree is a literal indication of what rules from the grammar can be invoked to
produce the program text. The trees shown in the notes on parsing and grammars
were all parse trees.

• An abstract syntax tree (AST) is a simplification of the parse tree. It eliminates
nodes that are no longer needed – generated by rules that existed only to encode op-
erator precedence, for example. It also emphasizes the operations that are expected
to happen rather than artifacts from the grammar.

For a good example of the difference between a parse tree and anAST, consider arith-
metic expressions that contain parentheses, such as x*(y+3). The only role of those
parentheses is to override the usual order of operations. They ensure that the addi-
tion in parentheses happens before the multiplication. But once we have this expres-
sion in tree form, the parentheses are redundant. Therefore the AST will eliminate
them.

In a parse tree, the leaves are terminals (tokens) and the interior nodes are non-
terminals. So the actual operations being performed: + and * sit at the leaves. The
AST turns that around so the operation is at the root and the operands are its chil-
dren. Compare the two figures below.

parsing.html


CS664 – Compiler Theory and Design – LIU 5 of 11

Figure 1: Abstract Syntax Tree for x*(y+3)

Homogeneous AST

The simplest way to represent an AST is to use a single node class which stores a
list of child nodes. Each node also keeps track of its type (what syntactic unit it
represents) and usually a few other fields needed for some of the node types. This is
called a homogeneous (same kind) representation. For example, here is a Node class
to represent ASTs for the calculator language.

class Node {

enum Type {

PROG, // Children are a sequence of statements

ASSIGN, // Child 0 is expr, ID stored too

PRINT, // Child 0 is expr

ADD, // The binary ops: child 0 is left, child 1 is right

SUB,

MUL,

DIV,

NUM, // Numeric constant, no children

ID // Identifier, no children

}

Type type; // What type of node is this?

Node[] children; // Uniform place to store child nodes

BigInteger integer; // Used for NUM only

String id; // Used for ASSIGN and ID

}



6 of 11 Prof. League – Spring 2016 – Interpreters and trees

Figure 2: Parse tree for x*(y+3) (using the precedence-segregated expression gram-
mar)

parsing.html#removing-ambiguities-and-left-recursion
parsing.html#removing-ambiguities-and-left-recursion


CS664 – Compiler Theory and Design – LIU 7 of 11

You can see the complete class in the absyn folder of the cs664pub repository. In
addition to the above fields, we add to the Node class some constructors to create
nodes of different types. Here is the most generic possible constructor – you just
provide the type and a list of children. (The three dots are Java notation for variadic
arguments.)

public Node(Type type, Node... children) {

this.type = type;

this.children = children;

}

That constructor will work just fine for creating AST nodes representing binary op-
erators (two children) and whole programs (arbitrary number of children).

Node expr = new Node(Node.Type.ADD, expr1, expr2);

Node prog = new Node(Node.Type.PROG, stm1, stm2, stm3, stm4, stm5);

For some other node types, it’s very useful to have custom constructors. Here’s one
that initializes a number using a Java integer (converting it to BigInteger in the
process):

public Node(int x) {

this.type = Type.NUM;

this.integer = BigInteger.valueOf(x);

}

And then two other custom constructors for variables and assignment:

public Node(String id) {

this.type = Type.ID;

this.id = id;

}

public Node (String id, Node expr) {

this.type = Type.ASSIGN;

this.id = id;

this.children = new Node[] {expr}; // Create array with one node

}

Now that we finished with the constructors, it’s also useful to override the toString
method so it shows something sensible. I like to use Lisp notation, where each inte-
rior node of the tree is wrapped in parentheses. The node type appears first inside
the left parenthesis, and then the other children follow, separated by white-space.
For example, the AST for the infix source language expression x*(y+3) would ap-
pear in prefix Lisp notation as (MUL x (ADD y 3)). Here is the toString definition
for Node:

https://git.liucs.net/cs664s16/cs664pub/tree/master
https://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
https://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html


8 of 11 Prof. League – Spring 2016 – Interpreters and trees

@Override

public String toString() {

// Handle NUM and ID first -- those are the leaf types.

if(type == Type.NUM) {

return integer.toString();

}

else if(type == Type.ID) {

return id;

}

else {

// Now we've got an interior node, so wrap in parentheses

StringBuilder buf = new StringBuilder("(");

buf.append(type);

if(type == Type.ASSIGN) { // For assignment, insert ID

buf.append(' '); // before the expr node.

buf.append(id);

}

for(Node child : children) { // For each child,

buf.append(' ');

buf.append(child); // Invoke toString on child

}

buf.append(")");

return buf.toString();

}

}

Finally, we can bring all that together in amain program that constructs trees, prints,
and executes them.

public class HomogeneousAST {

public static void main(String[] args) {

// The following builds a tree representing the program:

// x=391; y=(x+1)/2; print y*y

Node exprA =

new Node(Node.Type.DIV,

new Node(Node.Type.ADD,

new Node("x"),

new Node(1)),

new Node(2));

Node y = new Node("y");

Node exprB = new Node(Node.Type.MUL, y, y);

Node prog =

new Node(Node.Type.PROG,

new Node("x", new Node(391)),

new Node("y", exprA),



CS664 – Compiler Theory and Design – LIU 9 of 11

new Node(Node.Type.PRINT, exprB));

// Print and then interpret the program

System.out.println(prog);

interpret(prog);

}

// etc.

}

See the full definition, with the interpret method in the absyn/src folder of
cs664pub. Running the main program produces:

(PROG (ASSIGN x 391) (ASSIGN y (DIV (ADD x 1) 2)) (PRINT (MUL y y)))

38416

Heterogeneous AST

Another way to represent an AST is to use different classes for AST nodes that have
different requirements. They often form a class hierarchy, as shown in the inheri-
tance diagram. This approachmeans we canmore accurately reflect the expectations
of the language: the distinction between statements and expressions, for example –
represented here as abstract classes.

Figure 3: Class inheritance diagram for heterogeneous AST for calculator language

There can still be some sharing when different nodes have similar requirements –
thus we have a BinOp class rather than a separate class for each operator: Add, Sub,
Mul, etc. Below is a sample of the class declarations for an assignment statement –
see HeterogeneousAST.java for the rest.

abstract class Statement {

abstract void execute(HashMap<String, BigInteger> memory);

}

class Assign extends Statement {

String id;

Expr e;

https://git.liucs.net/cs664s16/cs664pub/tree/master/absyn/src
https://git.liucs.net/cs664s16/cs664pub/tree/master/absyn/src


10 of 11 Prof. League – Spring 2016 – Interpreters and trees

public Assign(String id, Expr e) {

this.id = id;

this.e = e;

}

@Override

public String toString() {

return "(ASSIGN " + id + " " + e + ")";

}

@Override

void execute(HashMap<String, BigInteger> memory) {

memory.put(id, e.evaluate(memory));

}

}

The main program using the Heterogeneous AST looks similar to the previous one,
except now we refer explicitly to different classes like Num, Id, Assign, and Print

rather than everything being a Node.

public class HeterogeneousAST {

public static void main(String[] args) {

// The following builds a tree representing the program:

// x=391; y=(x+1)/2; print y*y

Expr exprA =

new BinOp(BinOp.Op.DIV,

new BinOp(BinOp.Op.ADD,

new Id("x"),

new Num(1)),

new Num(2));

Expr y = new Id("y");

Expr exprB = new BinOp(BinOp.Op.MUL, y, y);

Program prog = new Program(

new Assign("x", new Num(391)),

new Assign("y", exprA),

new Print(exprB)

);

System.out.println(prog);

prog.interpret();

}

}

Also, when analyzing or rewriting trees using a heterogeneous representation, it’s a
little easier to refer to fields withmeaningful names rather than always using an array
of nodes.



CS664 – Compiler Theory and Design – LIU 11 of 11

The output of this program using the heterogeneous AST is exactly the same as be-
fore:

(PROG (ASSIGN x 391) (ASSIGN y (DIV (ADD x 1) 2)) (PRINT (MUL y y)))

38416


	Interpreters
	Writing Pico programs
	Tree representations
	Homogeneous AST
	Heterogeneous AST


