
CS664 – Compiler Theory and Design – LIU 1 of 16

Type checking
Christopher League*

16 March 2016

Most programming languages support some notion of types and type-checking. If
parsing is syntactic analysis, then type checking is semantic analysis. (Syntax refers
to the form of a phrase, whereas semantics refers to its meaning.)

What is a type?

Inmathematical logic, typeswere introduced to preventRussell’s paradox by restrict-
ing set-building operations. Similarly, in programming languages, types prevent the
programmer from accidentally (or intentionally) writing code that would be unsafe
or nonsense.

Essentially, a type defines a set of values. For example, the type integer might cor-
respond to Z, the set of all integers, or the type word16 might correspond to the set
of non-negative 16-bit integers: {x | x ∈ Z∧ 0 ≤ x < 65536}.

Types can be primitive such as int, float, and bool or they can be composite –
that is, they are composed by applying type operators to other types. A common
example of a type operator in many programming languages is the array type, often
designated with square brackets []. This is not a type on its own, but rather can be
applied as a postfix operator to other types, such as int[] for an array of integers or
bool[] for an array of booleans. And since those are types, we can apply the array
operator to either of them again, producing int[][] for an array of arrays of integers.

Types can also be built-in or user-defined. For example in C++ or Java, a class dec-
laration introduces (among other things) a new type.

class User {

public:
string firstName;

string lastName;

int birthYear;

};

We can now refer to User to declare composite variables such as:

User[] roster; // A list of Users

User[][] seatingChart; // A 2-dimensional grid of Users

*Copyright 2016, some rights reserved (CC by-sa)

https://en.wikipedia.org/wiki/Russell%27s_paradox

2 of 16 Prof. League – Spring 2016 – Type checking

Type checking can be static or dynamic. A static type checker performs semantic
analysis at compile time, so it can alert us about improper uses of values before run-
ning the program.

For example, in Java it doesn’t make any sense to divide a string by an integer:

System.out.println("Forty-two" / 7);

So the Java compiler says:

Error:(5, 31) java: bad operand types for binary operator '/'

first type: java.lang.String

second type: int

In contrast, dynamic type checking happens at run time. Dynamic checking is used
in languages such as Python and Ruby. If we convert the division example to Python
and run it,

print("Forty-two" / 7)

the Python interpreter will report:

TypeError: unsupported operand type(s) for /: 'str' and 'int'

This looks like pretty much the same error as in Java. The difference is that the error
only happens if and when the erroneous code is executed. If it is avoided somehow,
then the error is not triggered. Consider this Python script:

from random import random

if random() < 0.5:

print("Forty-two" / 7)

else:
print("Whew, we dodged a bullet!")

The imported random() function produces a random floating-point value between
0 and 1, so random() < 0.5 approximates flipping a coin. About half the time this
script will run to completion with no errors, and the other half of the runs will trigger
the type error:

% python dynamic_error.py

Whew, we dodged a bullet!

% python dynamic_error.py

Whew, we dodged a bullet!

CS664 – Compiler Theory and Design – LIU 3 of 16

% python dynamic_error.py

TypeError: unsupported operand type(s) for /: 'str' and 'int'

% python dynamic_error.py

TypeError: unsupported operand type(s) for /: 'str' and 'int'

% python dynamic_error.py

Whew, we dodged a bullet!

Because this is a compilers course, we’ll concern ourselves only with static type
checking.

Type-checking visitor

Let’s explore a simple technique for type checking by using a visitor to walk the parse
tree. We’ll use the calculator language, but this time let’s define distinct lexical rules
for integers and floats:

INT : [0-9]+;

FLOAT: [0-9]+ '.' [0-9]* ('e' '-'? [0-9]+)?;

So integers are non-empty sequences of digits. The floats in this language require a
non-empty sequence of digits followedby a dot. Then there are optionally additional
digits and an exponent. So these are all valid float values:

• 3.

• 0.5

• 3.14159

• 29.e-8

• 0.001e72

but these are not:

• 3

• .5

• .001e72

Then we have distinct IntExpr and FloatExpr rules in the expression grammar:

expr : '-' expr #NegExpr

| <assoc=right> left=expr op='^' right=expr #OpExpr

| left=expr op=('*'|'/') right=expr #OpExpr

4 of 16 Prof. League – Spring 2016 – Type checking

| left=expr op=('+'|'-') right=expr #OpExpr

| ID '(' expr (',' expr)* ')' #FunExpr

| '(' expr ')' #ParenExpr

| INT #IntExpr

| FLOAT #FloatExpr

| ID #VarExpr

;

Notice that compared to previous versions of this language, we also added an OpExpr

for the exponentiation operator, ‘ˆ’. It is right-associative so that 2ˆ2ˆ2ˆ3 is grouped
as 2ˆ(2ˆ(2ˆ3)), representing the mathematical notation 22

23

.

We also added a FunExpr for function calls. This supports syntax with one or more
comma-separated arguments. So examples of function calls would be:

• sin(theta)

• floor(15.2)

• sum(3, 5, 8, 13)

This language will have only primitive types for integers and floats – no composite
types. Let’s represent our types as an enumeration:

public enum Type {

INT,

FLOAT,

ERROR

}

We’ll explain the reason for the ERROR type in a subsequent section.

Now we’ll define a visitor to do our type checking – this is all implemented in the
typecheck project in the public repository.

public class TypeCheckingVisitor extends CalcLangBaseVisitor<Type> {

Thesuper-class is instantiatedwith <Type> to specify that all the visitmethods should
return the Type of the expression tree that they traverse. For statements (like print)
that don’t return any value, we can use null. (Alternatively, we could define VOID in
our enum and use that.)

Two of the simplest kinds of expressions to handle are the IntExpr and FloatExpr

– those types are obvious.

@Override

public Type visitIntExpr(CalcLangParser.IntExprContext ctx) {

https://git.liucs.net/cs664s16/cs664pub/tree/master/typecheck

CS664 – Compiler Theory and Design – LIU 5 of 16

return Type.INT; // An integer expression has type INT

}

@Override

public Type visitFloatExpr(CalcLangParser.FloatExprContext ctx) {

return Type.FLOAT; // A float expression has type FLOAT

}

Another expression case that’s pretty easy is negation. The negation operator can be
applied either to an int (-5) or to a float (- 3.14) and it doesn’t change the type.

@Override

public Type visitNegExpr(CalcLangParser.NegExprContext ctx) {

return ctx.expr().accept(this);
}

In thatmethod, ctx.expr() is used to refer to the sub-expression of the NegExpr, and
then accept(this)means “continue to traverse that subtree using this same visitor.”
So whatever type the sub-expression has, the negation expression will also have. (If
our language had non-numeric types, we’d have to be more restrictive here — nega-
tion can be applied to any signed numeric type but not, for example, to strings.)

Before moving on, we’ll implement a way to help us visualize what’s going on with
our type checker. The tracemethod defined below prints out a fragment of the parse
tree along with its type.

private Type trace(ParseTree ctx, Type type) {

System.err.printf("∅ ⊢ %s : %s\n", ctx.getText(), type);

return type;

}

We ask it to return the type so we can employ it very conveniently as part of the
return statement in the visit methods:

// These three methods *replace* the above implementations.

@Override

public Type visitIntExpr(CalcLangParser.IntExprContext ctx) {

return trace(ctx, Type.INT);

}

@Override

public Type visitFloatExpr(CalcLangParser.FloatExprContext ctx) {

return trace(ctx, Type.FLOAT);

}

6 of 16 Prof. League – Spring 2016 – Type checking

@Override

public Type visitNegExpr(CalcLangParser.NegExprContext ctx) {

return trace(ctx, ctx.expr().accept(this));
}

Now as our visitor traverses a program like print -4+5*6.9; it will output (not
including the line comments that start with #):

∅ ⊢ 4 : INT # in visitIntExpr

∅ ⊢ -4 : INT # in visitNegExpr

∅ ⊢ 5 : INT # in visitIntExpr

∅ ⊢ 6.9 : FLOAT # in visitFloatExpr

The notation we’re using here is from type theory, a branch of mathematical logic.
The statement ∅ ⊢ 4 : INT should be read “in the empty environment, we can prove
that 4 has type INT.”The symbol⊢ is called the turnstile and it generallymeans proves
or entails. We’ll see later what else can be used in place of the empty environment,
∅.

Figure 1: For reference, this is the parse tree of print -4+5*6.9;

We’ve handled parse tree nodes near the leaves: IntExpr, FloatExpr, and NegExpr.
But what about OpExpr which applies one of the five operators (ˆ, *, /, +, or -)?

In this version of the calculator language, we’ll be very strict about type-checking
the operators. They can all be applied to INT or FLOAT, but we won’t be able to mix
and match – we’re either doing integer arithmetic or floating-point arithmetic. For
example,

https://en.wikipedia.org/wiki/Turnstile_(symbol)

CS664 – Compiler Theory and Design – LIU 7 of 16

• 5 + 3 is type-correct because both expressions are integers, so it produces the inte-
ger 8

• 5.0 + 3. is type-correct because both expressions are floats, so it produces the float
8.

• 5 + 3. is a type error, because we cannot directly add an integer and a float
• 19 / 2 is type-correct because both expressions are integers, so it produces the in-

teger 9 — this is known in C++ and Java as integer division
• 19 / 2.0 is a type error, because we cannot directly divide an integer by a float

Later on we will explore how to allow implicit coercions from INT to FLOAT as sup-
ported by C++ and Java.

Until then, we can use the new function-call syntax to provide two expressions for
explicitly converting between integers and floats:

• floor(19.8) – this function expects a float and returns the largest integer less than
that float, so the result here would be the integer 19

• float(4) – this function expects an integer and returns the corresponding float, so
the result here would be 4.

As a further example, we can do the floating-point division 19
2

by writing
float(19)/2.0 or float(19)/float(2) or 19./float(2).

Here, then, is the basic strategy for type-checking the operators:

@Override

public Type visitOpExpr(CalcLangParser.OpExprContext ctx) {

Type leftType = ctx.left.accept(this);
Type rightType = ctx.right.accept(this);
if(leftType == rightType) {

return trace(ctx, leftType);

}

else {

return typeMismatch(ctx, leftType, rightType);

}

}

We use the ctx.left.accept(this) to recursively type-check the left (and
then right) sub-expression. Then if those two are the same type (leftType ==

rightType), we return it. Otherwise, we report the type mismatch using a helper
method:

private Type typeMismatch(ParseTree ctx, Type t1, Type t2) {

System.err.printf("Error: type mismatch: %s vs %s in %s\n",

t1, t2, ctx.getText());

return trace(ctx, Type.ERROR);

}

8 of 16 Prof. League – Spring 2016 – Type checking

So in the program print 19/2.0; the type checker would say:

∅ ⊢ 19 : INT

∅ ⊢ 2.0 : FLOAT

Error: type mismatch: INT vs FLOAT in 19/2.0

∅ ⊢ 19/2.0 : ERROR

Or in a type-correct program like print 19/2, it would report the type of the oper-
ator expression after the types of its sub-expressions.

∅ ⊢ 19 : INT # in visitIntExpr

∅ ⊢ 2 : INT # in visitIntExpr

∅ ⊢ 19/2 : INT # in visitOpExpr

Make sure to define visitParenExpr also, to allow types to be propagated through
parenthesized expressions, such as print (1+2)*3;:

∅ ⊢ 1 : INT # in visitIntExpr

∅ ⊢ 2 : INT # in visitIntExpr

∅ ⊢ 1+2 : INT # in visitOpExpr

∅ ⊢ (1+2) : INT # in visitParenExpr

∅ ⊢ 3 : INT # in visitIntExpr

∅ ⊢ (1+2)*3 : INT # in visitOpExpr

Reporting error location

Error messages are always more useful if we can pinpoint the region of code in which
they occur. The CommonTokenStream class provided by ANTLR caches the sequence
of tokens generated by the lexer, and each token also records its location (line number
and column position) in the code.

When we identify a type error in a sub-tree, we can use getSourceInterval() to
identify the starting and ending tokens. It is used as follows, where ctx is a ParseTree
or any of its node subclasses, such as OpExprContext or ParenExprContext; and
tokens is a CommonTokenStream.

Interval interval = ctx.getSourceInterval();

Token first = tokens.get(interval.a);

Token last = tokens.get(interval.b);

And thenon the Tokenobjectswe can call getLine() and getCharPositionInLine().
Here’s a complete error-reporting helpermethod that uses these facilities to pinpoint
the character or range of characters where the error occurred.

CS664 – Compiler Theory and Design – LIU 9 of 16

Figure 2: For reference, the parse tree for print (1+2)*3;. You can see that the post-
order traversal would be Int(1), Int(2), Op(+), Paren, Int(3), Op(*), as traced by
the type checking visitor.

private void error(ParseTree ctx, String message) {

errors++;

Interval interval = ctx.getSourceInterval();

Token first = tokens.get(interval.a);

Token last = tokens.get(interval.b);

if(first == last) {

System.err.printf("%d.%d",

first.getLine(),

first.getCharPositionInLine()

);

} else {

System.err.printf("%d.%d-%d.%d",

first.getLine(),

first.getCharPositionInLine(),

last.getLine(),

last.getCharPositionInLine()

);

}

System.err.printf(": Error: %s\n", message);

}

The error() method uses if(first == last) to distinguish whether the error is
related to just one token (such as an undefined variable) or a range of tokens (such

10 of 16 Prof. League – Spring 2016 – Type checking

as a type mismatch in a binary operator).

In the sample code for TypeCheckingVisitor, the error() method is called by
typeMismatch to report conflicting types, by checkNumArgs if a function is called
with the wrong number of arguments, by visitVarExpr if the variable is undefined,
and by visitFunExpr if a function name is unknown.

Cascading type errors

When a type error occurs deep inside a sub-expression, there is a danger of having
that error cascade to produce a series of other errormessages. Often (but not always)
these superfluous errors are not helpful, because fixing the first one will automati-
cally resolve them.

Here’s an example using a series of addition operators, which are left-associative.
The bottom-most (left-most) addition is 1.0+2, which should produce a type error
because the left side is a FLOAT and the right side is an INT. So after reporting that
error, what should we return for the type of 1.0+2? Our choice will affect subsequent
analysis the rest of the way up the tree!

Figure 3: Parse tree for print 1.0+2+3+4+5+6;

If we choose to say that 1.0+2 is a FLOAT, then the error cascades. In the parent
operator, it will report a second type mismatch because the left side of that addition
is a FLOAT and the right side is an INT. And so on, up the tree.

https://git.liucs.net/cs664s16/cs664pub/blob/master/typecheck/src/main/java/TypeCheckingVisitor.java

CS664 – Compiler Theory and Design – LIU 11 of 16

If we choose to say that 1.0+2 is an INT, then we get lucky and there is no cascade,
because that matches the expected INT type of the rest of the sum.

But how to choose? Always returning either the left type (FLOAT in this example) or
the right type (INT) will behave badly in some cases and okay in others. All we need
to do is swap the expressions in the bottom-most addition and we get the opposite
behavior.

An alternative is to use a specially-designated ERROR type. Marking an expression as
having type ERROR indicates “there was a type error here, so we don’t knowwhat type
it should be.” That alone will not prevent the cascade. Instead, it will just continue to
report that ERROR does not match other types the rest of the way up the tree.

∅ ⊢ 1.0 : FLOAT

∅ ⊢ 2 : INT

1.6-1.10: Error: type mismatch: FLOAT vs INT in 1.0+2

∅ ⊢ 1.0+2 : ERROR

∅ ⊢ 3 : INT

1.6-1.12: Error: type mismatch: ERROR vs INT in 1.0+2+3

∅ ⊢ 1.0+2+3 : ERROR

∅ ⊢ 4 : INT

1.6-1.14: Error: type mismatch: ERROR vs INT in 1.0+2+3+4

∅ ⊢ 1.0+2+3+4 : ERROR

∅ ⊢ 5 : INT

1.6-1.16: Error: type mismatch: ERROR vs INT in 1.0+2+3+4+5

∅ ⊢ 1.0+2+3+4+5 : ERROR

∅ ⊢ 6 : INT

1.6-1.18: Error: type mismatch: ERROR vs INT in 1.0+2+3+4+5+6

∅ ⊢ 1.0+2+3+4+5+6 : ERROR

However, if we implement our reporting of type mismatches more carefully, we can
simply suppress any typemismatch errors where one of the types in conflict is ERROR.
Then only the bottom-most error is reported, and the rest are ignored.

Below is the definition of a typeMismatchhelper that prints an error only if we haven’t
already reported an error in a sub-expression.

private Type typeMismatch(ParseTree ctx, Type t1, Type t2) {

if(t1 != Type.ERROR && t2 != Type.ERROR) { // prevent cascade

error(ctx, String.format("type mismatch: %s vs %s in %s",

t1, t2, ctx.getText()));

}

return trace(ctx, Type.ERROR);

}

Now only the FLOAT vs INT conflict is reported, and the remaining ERROR vs INT con-
flicts are suppressed. The typing judgments are just for visualizing and debugging; in
a real production compiler they’d be turned off so they don’t count as errormessages.

12 of 16 Prof. League – Spring 2016 – Type checking

∅ ⊢ 1.0 : FLOAT

∅ ⊢ 2 : INT

1.6-1.10: Error: type mismatch: FLOAT vs INT in 1.0+2

∅ ⊢ 1.0+2 : ERROR

∅ ⊢ 3 : INT

∅ ⊢ 1.0+2+3 : ERROR

∅ ⊢ 4 : INT

∅ ⊢ 1.0+2+3+4 : ERROR

∅ ⊢ 5 : INT

∅ ⊢ 1.0+2+3+4+5 : ERROR

∅ ⊢ 6 : INT

∅ ⊢ 1.0+2+3+4+5+6 : ERROR

Even with this cascade suppression, it’s still possible for one expression to produce
more than one error, as long as the nodes containing the mismatch are “cousins,”
rather than in an ancestor/descendant relationship. For example, consider the tree
for 6.2ˆ3*8+7*4ˆ2.0. Each of the exponent OpExpr(ˆ) nodes contains a type error,
but they are not in an ancestor relationship so both will be reported.

Figure 4: Parse tree for print 6.2ˆ3*8+7*4ˆ2.0; which contains type errors down
both branches.

∅ ⊢ 6.2 : FLOAT

∅ ⊢ 3 : INT

1.6-1.10: Error: type mismatch: FLOAT vs INT in 6.2^3

∅ ⊢ 6.2^3 : ERROR

∅ ⊢ 8 : INT

∅ ⊢ 6.2^3*8 : ERROR

∅ ⊢ 7 : INT

∅ ⊢ 4 : INT

∅ ⊢ 2.0 : FLOAT

CS664 – Compiler Theory and Design – LIU 13 of 16

1.16-1.18: Error: type mismatch: INT vs FLOAT in 4^2.0

∅ ⊢ 4^2.0 : ERROR

∅ ⊢ 7*4^2.0 : ERROR

∅ ⊢ 6.2^3*8+7*4^2.0 : ERROR

Symbol table

Our type checker for the calculator language is not complete until it supports vari-
ables. Calculator programs are a sequence of statements, and a statement is either a
print or a variable assignment:

pi = 3.14159;

r = 7.1;

area = pi * r^2;

print area;

The lifetime and scope of each variable is the rest of the program that follows its first
assignment. Thanks to that simple rule and the absence of loops, it’s easy to deduce
the type of each variable from the expression on the right side of the assignment. In
this program:

k = 3;

j = 4.1;

print j+k;

we deduce that k is an INT and j is a FLOAT. Then, on line 3 we observe that j+k is a
type mismatch.

Previously, our typing judgments looked like ∅ ⊢ E : T, which we read as “in the
empty environment, we can prove that expression E has type T.” To keep track of
the types of variables, we extend the empty environment to a mapping from variable
names to their types. So {x=INT} ⊢ x : INTmeans “in an environment where vari-
able x has type INT, the expression x has type INT.” This seems indeed like an obvious
conclusion, but these environments will help us track variable types as we traverse
the program tree. For the program above, the type checker outputs:

{} ⊢ 3 : INT

{k=INT} ⊢ 4.1 : FLOAT

{j=FLOAT, k=INT} ⊢ j : FLOAT

{j=FLOAT, k=INT} ⊢ k : INT

3.6-3.8: Error: type mismatch: FLOAT vs INT in j+k

{j=FLOAT, k=INT} ⊢ j+k : ERROR

14 of 16 Prof. League – Spring 2016 – Type checking

You can see that when we type-check the sub-expression 4.1 (line 2), the environ-
ment already contains k=INT. Then when we type-check the usage of j on line 3, the
environment has {j=FLOAT, k=INT} so we conclude that j has type FLOAT.

The environment is also called a symbol table. For now, the symbol table can just
be represented by HashMap<String,Type>, a mapping from names to types. Later
when we want to support scopes and other attributes of variables, the symbol table
representation will need to be more sophisticated.

Here are the additional fields and overrides needed in the TypeCheckingVisitor:

private HashMap<String, Type> symbols = new HashMap<>();

@Override

public Type visitAssignStmt(CalcLangParser.AssignStmtContext ctx) {

String var = ctx.ID().getText();

Type type = ctx.expr().accept(this);
symbols.put(var, type); // Add to symbol table

return null;
}

@Override

public Type visitVarExpr(CalcLangParser.VarExprContext ctx) {

String var = ctx.ID().getText();

Type type = symbols.get(var); // Look up in symbol table

if(type == null) {

error(ctx, "undefined variable: " + var);

return trace(ctx, Type.ERROR);

}

else {

return trace(ctx, type);

}

}

Coercions and subtypes

Most languages support converting values from one type to another, either implicitly
or explicitly. An explicit coercion is one that is specifically coded in the program
text. For example, the float(x) function is an explicit coercion froman integer value
to a floating-point value, and floor(x) is an explicit coercion from floating-point to
integer.

An implicit coercion is one that happens automatically, without having to be coded
into the program text. The type checker for the calculator language described
above does not support implicit coercions, but many languages do. Typically, an
implicit coercion is supported when there would be no loss of data. For example,

CS664 – Compiler Theory and Design – LIU 15 of 16

in C/C++/Java we have an implicit coercion from float to double because that just
increases the precision without loss. But a conversion from double to float would
be problematic because we would lose precision. Similarly, converting from float

to int would lose data because a value like 3.14 would be truncated to just 3; but
coercion from int to float could be supported implicitly.

A good formal way to represent possible coercions is as a partially-ordered set, or
lattice. We can draw the lattice with arrows to represent that one type is a subtype
of another. Generally, implicit coercions are allowed in the direction of the arrow.
Subtype relationships are usually notated with the less-than-equal operator (int ≤
long) or variations like (int <: long) or (int ⪯ long).

Figure 5: Lattice for numeric and collection types in a hypothetical programming
language.

Once we have defined the lattice, we can calculate the least upper bound between
any two types. The LUB(t1, t2) is the nearest type for which t1 and t2 are subtypes
in the lattice. Also, every type is considered to be a subtype of itself. Here are some

16 of 16 Prof. League – Spring 2016 – Type checking

examples using the lattice in the figure:

• LUB(float, float) = float

• LUB(double, int) = double

• LUB(short, char) = int

• LUB(short, char) = int

• LUB(long, String) = Comparable

• LUB(String, LinkedList) = Sequence

• LUB(Set, String) = Collection

• LUB(Array, byte) = ERROR

(The least upper bound is not always defined, and can be ambiguous if there is more
than one. To ensure that it is at least defined, we can add an ERROR type at the root
of the lattice if there isn’t already a root. If there is more than one least upper bound,
we can simply interpret that ambiguity as a type error.)

	What is a type?
	Type-checking visitor
	Reporting error location
	Cascading type errors
	Symbol table
	Coercions and subtypes

