
CS664 – Compiler Theory and Design – LIU 1 of 11

Tree visitors
Christopher League*

24 February 2016

Context classes

ANTLR automatically generates heterogeneous representations of the parse trees
for your grammar. The tree classes for each non-terminal are embedded within the
generated parser class and inherit from other Tree classes in the ANTLR library.

For example, let’s consider the sample grammar for the Calculator language, as
shown to the left in the figure.

Figure 1: Example calculator grammar, and some of the classes ANTLR generates

The fragment of the grammar shown defines three non-terminals: prog represent-
ing programs, stmt representing statements, and expr representing expressions.
Each one of these produces a so-called “Context” class to represent its nodes
in the parse tree generated by those grammar rules. These context classes are
actually embedded in the parser class, so normally you would refer to them as
ExampleParser.ProgContext and ExampleParser.StmtContext and so on.

The ProgContext contains two methods named stmt for accessing the statements
that make up the program. Because the occurrence of stmt in the prog grammar

*Copyright 2016, some rights reserved (CC by-sa)

2 of 11 Prof. League – Spring 2016 – Tree visitors

rule appears within a star ‘*’ operator, there can be zero or more statements in a
program. So you can either call stmt() to retrieve the entire list of them, or use
stmt(i) to retrieve the statement at position i (with zero-based indexing, as usual).

The StmtContext includes the method ID() to retrieve the ID token used in an as-
signment statement, and expr() to return the single expression used in either an
assignment or a print statement.

Finally, ExprContext has several of methods for retrieving its components. Because
some of the alternatives have two occurrences of expr, the method expr() returns
a list, or you can use expr(0) for the first occurrence and expr(1) for the second.
The last two alternatives of the expr non-terminal include tokens for numeric literals
NUM and variable identifiers ID, so you can access those tokens (a.k.a. TerminalNodes)
with NUM() and ID().

Base visitor

In addition to these classes representing nodes in the parse tree, ANTLR generates
a visitor class named after the grammar, so in this case, ExampleBaseVisitor. This
visitor class includes a distinct method for each non-terminal. So in this case, it
contains visitProg, visitStmt, and visitExpr.

The default behavior of these visit methods is to implement a pre-order traversal of
the parse tree. Let’s illustrate that by drawing the parse tree that ANTLR generates
for the calculator program n=5; print -3*(n+1); as shown in the figure.

To invoke a visitor on a parse tree, we use the method accept(), like this:

ParseTree tree = parser.top(); // or whatever your top-level rule is called

ExampleBaseVisitor visitor = new ExampleBaseVisitor(); // or define a sub-class

top.accept(visitor); // Do the traversal!

When the base visitor is applied to the parse tree above, the following sequence of
methods are invoked. Eachmethod call is numbered, and those numbers correspond
to the red annotations on the parse tree.

1. visitProg(ctx) top-level program

• where ctx.stmt(0).getText() is "n=5"
• and ctx.stmt(1).getText() is "print -3*(n+1)"

2. visitStmt(ctx) assignment statement

• where ctx.ID().getText() is "n"
• and ctx.expr().getText() is "5"

3. visitExpr(ctx) numeric literal

CS664 – Compiler Theory and Design – LIU 3 of 11

Figure 2: ANTLRparse tree for n=5; print -3*(n+1);Thered annotations indicate
a pre-order traversal.

4 of 11 Prof. League – Spring 2016 – Tree visitors

• where ctx.NUM().getText() is "5"

4. visitStmt(ctx) print statement

• where ctx.ID() is null
• and ctx.expr().getText() is "-3*(n+1)"

5. visitExpr(ctx)multiplication

• where ctx.expr(0).getText() is "-3"
• and ctx.expr(1).getText() is "(n+1)"

6. visitExpr(ctx) negation

• where ctx.expr(0).getText() is "3"

7. visitExpr(ctx) numeric literal

• where ctx.NUM().getText() is "3"

8. visitExpr(ctx) parentheses

• where ctx.expr(0).getText() is "n+1"

9. visitExpr(ctx) addition

• where ctx.expr(0).getText() is "n"
• and ctx.expr(1).getText() is "1"

10. visitExpr(ctx) variable

• where ctx.ID().getText() is "n"

11. visitExpr(ctx) numeric literal

• where ctx.NUM().getText() is "1"

By overriding some of these methods in the base visitor, we can determine what
happens, including changing the traversal order if we need to.

We also can specify the return types of thesemethods, because ExampleBaseVisitor
takes a type parameter. So if we specify ExampleBaseVisitor<BigInteger> then
each visit method will return a BigInteger reference (which could be null). Or we
can use regular integer references with ExampleBaseVisitor<Integer>. Or if we
don’t need any return type at all, then ExampleBaseVisitor<Void> for which the
only valid return value is null. (The reason for Integer rather than int and Void

rather than void is that Java generic classes cannot be primitive types, but must be
reference types. In practice, the main difference is that reference types can be null.)

CS664 – Compiler Theory and Design – LIU 5 of 11

Overriding visit methods

Overriding means to substitute a newly-defined method for an existing method in
the base visitor.

Let’s say we want to create a visitor that will traverse a parse tree for the calcula-
tor language and just keep track of the set of identifiers that are being referenced
(assigned or retrieved) in the program.

So in the program illustrated above, n=5; print -3*(n+1); our visitor will just pro-
duce the set {n}. But we can imagine more complex programs like a=3; b=z; print

c*b+k;. For this one, the set of identifiers would be {a, b, c, k, z}.

To begin this visitor, define a class CollectVarsVisitor that begins like this:

public class CollectVarsVisitor extends ExampleBaseVisitor<Void> {

In order to collect variable names, let’s define a vars field using the Java HashSet

type, so it can store a set of strings:

HashSet<String> vars = new HashSet<String>();

Now, which visit methods do we need to override? Any whose nodes include an ID

token — that means visitStmt for the assignment statement and visitExpr for the
variable expression. In both cases, ctx.ID() might be null if we’re looking at other
alternatives of statements or expressions, so we need to guard against that.

In IntelliJ, we can ask it to fill in the basic structure of an overridden method by
selecting Code » Override Methods and then choosing visitStmt and visitExpr.
The structure it provides is:

@Override

public Void visitStmt(ExampleParser.StmtContext ctx) {

return super.visitStmt(ctx);
}

The call to super.visitStmt(ctx) says to jump to the existing implementation of
visitStmt in the base class, and execute it. So that falls back to the default traversal
behavior. But we can insert some code before or after that super call to take addi-
tional actions. Or we can eliminate the super call if we know we don’t need to visit
any children of this node.

In order to store all reference variable names into the vars field, we’ll add a bit of
logic to visitStmt:

@Override

public Void visitStmt(Example1Parser.StmtContext ctx) {

6 of 11 Prof. League – Spring 2016 – Tree visitors

TerminalNode id = ctx.ID();

if(id != null) {

vars.add(id.getText());

}

return super.visitStmt(ctx);
}

So that takes care of all variables that appear on the left side of assignment state-
ments. But what about variables that appear within expressions? Then we need to
override visitExpr similarly:

@Override

public Void visitExpr(Example1Parser.ExprContext ctx) {

TerminalNode id = ctx.ID();

if(id != null) {

vars.add(id.getText());

}

return super.visitExpr(ctx);
}

Now, after applying the visitor to the parse tree for a=3; b=z; print c*b+k;

// Setup

ANTLRInputStream input = new ANTLRInputStream("a=3; b=z; print c*b+k;");

ExampleLexer lexer = new ExampleLexer(input);

CommonTokenStream tokens = new CommonTokenStream(lexer);

ExampleParser parser = new ExampleParser(tokens);

// Parse and visit

ParseTree tree = parser.top();

CollectVarsVisitor visitor = new CollectVarsVisitor();

tree.accept(visitor);

// Output result

System.out.println(visitor.vars);

we get the desired output:

[b, c, a, k, z]

Theordering of strings in a set is not significant, but this set contains all five variables
that are used in the calculator program.

We can achieve all sorts of analyses and translations by overriding methods from the
base visitor generated by the ANTLR grammar. But let’s look at two additional tools
that make it easier.

CS664 – Compiler Theory and Design – LIU 7 of 11

Distinguishing rule alternatives

The first tool allows us to put tags or labels on each alternative in the definition of
a non-terminal. We do this by placing an identifier next to a pound sign after the
definition of the alternative:

stmt : ID '=' expr #AssignStmt

| 'print' expr #PrintStmt

;

As before, there are two types of statements, but now they have the explicit labels
AssignStmt and PrintStmt. Labeling rules like this allows us to make finer distinc-
tions in the parse tree representation and in the visitor class. Instead of having just
one StmtContext class and visitStmtmethod as before, now ANTLR will generate
separate classes and visit methods for each label:

• AssignStmtContext class
• PrintStmtContext class
• visitAssignStmt method
• visitPrintStmt method

See the figure for the labeled grammar and the larger set of context classes it gener-
ates.

Figure 3: Labeled grammar for calculator language, with corresponding context
classes and visitor

Now it is much easier to distinguish between the different node types. Notice that in
the expression non-terminal, we used the same label OpExpr for two different alter-
natives. That works fine, because those alternatives have the same ‘shape’ — they’re

8 of 11 Prof. League – Spring 2016 – Tree visitors

both binary operator expressions. We need them to be separate alternatives so we
can assign higher precedence tomultiplication than to addition. But by naming them
both OpExpr we can handle them the same way in the visitor.

The next figure shows the same tree as before, but this time labeled with the explicit
rule names rather than themoremysterious expr:2, stmt:2, and the like. Again, the
red shows the same pre-order traversal.

Figure 4: Labeled ANTLR parse tree for n=5; print -3*(n+1);

When the new, expanded base visitor is applied to the new parse tree, the following
sequence ofmethods are invoked. Eachmethod call is numbered, and those numbers
correspond to the red annotations on the parse tree.

1. visitProg(ctx) top-level program

• where ctx.stmt(0).getText() is "n=5"
• and ctx.stmt(1).getText() is "print -3*(n+1)"

2. visitAssignStmt(ctx) assignment statement

• where ctx.ID().getText() is "n"
• and ctx.expr().getText() is "5"

3. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "5"

4. visitPrintStmt(ctx) print statement

CS664 – Compiler Theory and Design – LIU 9 of 11

• where ctx.ID() is null
• and ctx.expr().getText() is "-3*(n+1)"

5. visitOpExpr(ctx)multiplication

• where ctx.expr(0).getText() is "-3"
• and ctx.expr(1).getText() is "(n+1)"

6. visitNegExpr(ctx) negation

• where ctx.expr().getText() is "3"

7. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "3"

8. visitParenExpr(ctx) parentheses

• where ctx.expr().getText() is "n+1"

9. visitOpExpr(ctx) addition

• where ctx.expr(0).getText() is "n"
• and ctx.expr(1).getText() is "1"

10. visitVarExpr(ctx) variable

• where ctx.ID().getText() is "n"

11. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "1"

In that sequence of method calls, notice that the ctx.expr method does not always
take an integer. Because we can now distinguish negation from parentheses from bi-
nary operators, the method types can bemore precise. The visitOpExpr requires us
to distinguish ctx.expr(0) from ctx.expr(1) because it has two sub-expressions.
But for visitNegExpr and visitParenExpr there is just one embedded expression
so we can do ctx.expr() (without an index) to retrieve it.

Distinguishing node children

There’s one more distinction we can make in our grammar that can make things
a little clearer. Instead of always referring to our children (sub-trees) using non-
terminal names and indices like ctx.expr(1), we can give them semantic names.
The place this is most useful in the calculator grammar is in the OpExpr alternatives:

expr : '-' expr #NegExpr

10 of 11 Prof. League – Spring 2016 – Tree visitors

| left=expr op=('*'|'/') right=expr #OpExpr

| left=expr op=('+'|'-') right=expr #OpExpr

| '(' expr ')' #ParenExpr

| NUM #NumExpr

| ID #VarExpr

;

Notice the left= and op= and right= preceding each component in OpExpr. These
add explicit labels for the children of this node. The exprmethods are still available,
but now the OpExprContext will have fields with more intuitive names.

Figure 5: OpExprContext class updated with fields for labeled child nodes

I’ll repeat one more time the pre-order traversal of n=5; print -3*(n+1); — this
time making use of the field names in each visitOpExpr call:

1. visitProg(ctx) top-level program

• where ctx.stmt(0).getText() is "n=5"
• and ctx.stmt(1).getText() is "print -3*(n+1)"

2. visitAssignStmt(ctx) assignment statement

• where ctx.ID().getText() is "n"
• and ctx.expr().getText() is "5"

3. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "5"

4. visitPrintStmt(ctx) print statement

• where ctx.ID() is null
• and ctx.expr().getText() is "-3*(n+1)"

5. visitOpExpr(ctx)multiplication

CS664 – Compiler Theory and Design – LIU 11 of 11

• where ctx.left.getText() is "-3"
• and ctx.op.getText() is "*"
• and ctx.right.getText() is "(n+1)"

6. visitNegExpr(ctx) negation

• where ctx.expr().getText() is "3"

7. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "3"

8. visitParenExpr(ctx) parentheses

• where ctx.expr().getText() is "n+1"

9. visitOpExpr(ctx) addition

• where ctx.left.getText() is "n"
• and ctx.op.getText() is "+"
• and ctx.right.getText() is "1"

10. visitVarExpr(ctx) variable

• where ctx.ID().getText() is "n"

11. visitNumExpr(ctx) numeric literal

• where ctx.NUM().getText() is "1"

	Context classes
	Base visitor
	Overriding visit methods
	Distinguishing rule alternatives
	Distinguishing node children

