
CS691 – Software Development Project – LIU 1 of 6

Figure 1: Sample Perceptron from this overview

Perceptrons

These are rough notes from our meeting onThursday 19 January.

We (I) decided to pursue a project in deep reinforcement learning, perhaps with
application to game-playing. I referenced these projects and papers:

• OpenAI Universe
• Metalforge Crossfire
• Human-level control through deep reinforcement learning,Nature 518, 26 February
2015

Basics

To begin exploring this area, we started with the simplest artificial neural networks,
known as perceptrons. This formulation began with McCulloch and Pitts in 1943!
(I was off by a few decades in class.)

We have a graph in which both nodes (circles) and edges (lines) are assigned real
numbers in some range, typically 0..1 or -1..+1, but other ranges can be used too.
Numbers assigned to nodes are called activation levels, and numbers assigned to
edges are called weights.

In this perceptron, let’s call the two input nodes (left layer) A and B, and the output
node is C. The upper edge weight will be wa and the lower edge weight is wb. The
main calculation is just a weighted average: C = A·wa + B·wb.

But thenwe also apply a function to the result, to adjust its range and kind of “snap” it
into a positive or negative result (activated or inactive). This function can be a simple
“step” with a given threshold t, such as t = 0.5 or t = 1.0:

http://toritris.weebly.com/perceptron-2-logical-operations.html
https://universe.openai.com/
http://www.metalforge.net/
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html


2 of 6 Prof. League – Spring 2017 – Perceptrons

Figure 2: Step function, with threshold t = 0. [Source]

f(x) =

{
0 if x < t

1 if x ≥ t

Later on, we may use a more sophisticated function that smooths out the disconti-
nuity at the threshold, like this one, called the Sigmoid function:

f(x) =
1

1+ e−x

It’s interesting to see if we canmake perceptrons emulate theBoolean logic operators,
like AND, OR, NOT, XOR.The perceptron above, with weightswa = 0.6 andwb =

0.6 implements OR:

A B C = f(A*Wa + B*Wb)

0 0 f(0*0.6 + 0*0.6) = f(0) = 0

0 1 f(0*0.6 + 1*0.6) = f(0.6) = 1 (because 0.6 > t)

1 0 f(1*0.6 + 0*0.6) = f(0.6) = 1

1 1 f(1*0.6 + 1*0.6) = f(1.2) = 1

Here we’re using the step function with threshold t = 0.5.

We can implement Boolean AND withwa = 0.4 andwb = 0.4:

http://www.gnuplotting.org/defining-piecewise-functions/


CS691 – Software Development Project – LIU 3 of 6

Figure 3: The “logistic” sigmoid (formula above), centered on x = 0. [Wikimedia]

A B C = f(A*Wa + B*Wb)

0 0 f(0*0.4 + 0*0.4) = f(0) = 0

0 1 f(0*0.4 + 1*0.4) = f(0.4) = 0 (because 0.4 < t)

1 0 f(1*0.4 + 0*0.4) = f(0.4) = 0

1 1 f(1*0.4 + 1*0.4) = f(0.8) = 1 (because 0.8 > t)

XOR

Aproblem arises with the XOR function. Minsky and Papert showed that this simple
perceptron model cannot encode XOR. (And their influence set back research into
artificial neural networks for a decade or more!) A perceptron canmodel (and learn)
any function that is linearly separable, but XOR is not.

The trick to making this model more powerful is to add a “hidden” layer between
the input nodes and the output node. Then you fully-connect the nodes of the input
layer with those in the hidden layer. That produces a graph with five nodes and six
edges:

We struggled a bit with getting this to work, but Priya figured it out! The solution is
to set the threshold of the step function to 1. Below is her work:

In retrospect, I now understand the use of the θ (theta) label in these diagrams: it
indicates the threshold value to use to assign a value to the labeled node. So = 1

was staring us in the face!

https://commons.wikimedia.org/wiki/File%3ALogistic-curve.svg


4 of 6 Prof. League – Spring 2017 – Perceptrons

Figure 4: XOR implementation with hidden layer

Code

Below is a sketch of a small C++ program to implement simple fixed-size perceptrons
(three nodes, two edges). It includes a main program that – once the functions are
working correctly – will print the truth tables for AND, OR, and NAND! See the
sections marked “TODO”. Here is the expected output:

AND:

0 0: 0

0 1: 0

1 0: 0

1 1: 1

OR:

0 0: 0

0 1: 1

1 0: 1

1 1: 1

NAND:

0 0: 1

0 1: 1

1 0: 1

1 1: 0

// Simple perceptron logic gate implementation

#include <iostream>

using namespace std;

float step_function(float threshold, float value)

{

// TODO
return 0;



CS691 – Software Development Project – LIU 5 of 6

Figure 5: Full resolution

priya-xor.jpg


6 of 6 Prof. League – Spring 2017 – Perceptrons

}

float run_perceptron(float weightA, float weightB,

float valueA, float valueB,

float threshold)

{

// TODO
return 0;

}

void show_truth_table(float weightA, float weightB,

float threshold)

{

// TODO: call run_perceptron 4 times,

// feeding it all four values of A,B.

}

int main()

{

cout << "AND:\n";

show_truth_table(0.4, 0.4, 0.5);

cout << "OR:\n";

show_truth_table(0.6, 0.6, 0.5);

// TODO: can you figure out two weights and a threshold

// that will implement "NAND"? This is the opposite of AND.

cout << "NAND:\n";

show_truth_table(0,0,0);

return 0;

}


	Basics
	XOR
	Code

