
CS695 – Functional Programming – LIU 1 of 2

Code examples from 9/14— recursion, lists

Pattern-matching on values

vowel :: Char -> Bool

vowel 'a' = True

vowel 'e' = True

vowel 'i' = True

vowel 'o' = True

vowel 'u' = True

vowel _ = False

Count the length of a collatz sequence starting from n. See also the assignment 1
solutions. Note that those are backquotes on the `div` – some of you are getting
that wrong. Also, pay attention to the difference between `div` (integer division)
and / (float, or fractional division).

collatzCount :: Int -> Int

collatzCount n

| n <= 1 = 0

| even n = collatzCount (n `div` 2) + 1

| otherwise = collatzCount (3*n+1) + 1

A really simple function that works on any numeric type (class Num).

squared x = x*x

A main function, using the do notation and output statements (side effects).

main = do
putStrLn "Hello there"

putStrLn "Haskell is fun"

Generating lists recursively

Produce a list with count copies of a given value elem.

genList :: a -> Int -> [a]

genList elem count

| count == 0 = []

| otherwise = elem : genList elem (count-1)

a01sol.html
a01sol.html


2 of 2 Prof. League – Fall 2017 – Code examples from 9/14— recursion, lists

Examples:

• genList 3 5⇒ [3,3,3,3,3]

• genList 'a' 8⇒ "aaaaaaaa"

• genList 'x' 0⇒ ""

Produce a range of integers (much like the built-in notation [3..8]which is syntactic
sugar for a function enumFromTo).

fromTo :: Int -> Int -> [Int]

fromTo start end

| end < start = []

| otherwise = start : fromTo (start+1) end

Examples:

• fromTo 3 8⇒ [3,4,5,6,7,8]

• fromTo 10 14⇒ [10,11,12,13,14]

• fromTo 10 8⇒ []

Duplicate each element of the list.

dupe :: [a] -> [a]

dupe [] = []

dupe (h:t) = h : h : dupe t

Examples:

• dupe [3,4,5]⇒ [3,3,4,4,5,5]

• dupe []⇒ []

• dupe "Chris"⇒ "CChhrriiss"

Square each element of a list, using direct recursion. (A more idiomatic approach
would be to use map.)

squares [] = []

squares (h:t) = h*h : squares t

Examples:

• squares [3,4,5]⇒ [9,16,25]

• squares [2,10,8]⇒ [4,100,64]

• squares []⇒ []


	Generating lists recursively

