
CS695 – Functional Programming – LIU 1 of 8

Code examples from 9/21 — data types

We looked at creating new types and constructors with the data keyword. These
types are often referred to as algebraic data types. Both types and constructors
must begin with uppercase letters.

Enumerations

The simplest kind is an enumeration,where you just list all the possible values of the
type. For example:

data ColorPalette

= Red

| Orange

| Blue

| Yellow

| Green

| Purple

deriving (Eq, Enum, Ord, Show)

The deriving line is optional, but provides a list of type classes that the new type
should implement. Certain built-in classes can be derived automatically this way. For
other classes, you must specify the implementation. Here’s what the classes derived
for ColorPalette mean:

• Eq just means that you can compare two members of ColorPalette using operators
(==) and (/=) (not equals):

ghci> Red == Blue

False

ghci> Red /= Blue

True

• Ord generates an ordering of the members of ColorPalette so you can compare
them with operators like (<) and (>). The ordering is just as given, so we have:

ghci> Red < Orange

True

ghci> Blue > Yellow

False

• Show is a lot like the toStringmethod on Java objects. It provides a way for the pro-
grammer or the GHCi system to convert objects to strings, for example to produce

2 of 8 Prof. League – Fall 2017 – Code examples from 9/21— data types

output. The corresponding function is show, but this is also implicitly used by the
print function:

ghci> show Blue

"Blue"

ghci> print Blue

Blue

• Enum just means that members of the ColorPalette class can be converted to and
from integers. Here it’s done in the obvious way where the first member (Red) is zero,
and then you count up from there.

ghci> fromEnum Red

0

ghci> fromEnum Yellow

3

When converting from integers back to members of ColorPalette, you need to
specify the target type using :: if it can’t be inferred from context – without that
it is assumed to be something different and these examples wouldn’t work:

ghci> toEnum 0 :: ColorPalette

Red

ghci> toEnum 3 :: ColorPalette

Yellow

ghci> toEnum 6 :: ColorPalette

*** Exception: toEnum{ColorPalette}: tag (6) is outside of

enumeration's range (0,5)

You can also define your own functions that accept or produce members of
ColorPalette, such as this one to answer whether the color is considered to be
primary:

isPrimary1 x = x == Red || x == Green || x == Blue

That definition relies on the Eq instance of ColorPalette, because it’s using (==)

to compare two colors. If you don’t want to use Eq, you could instead write it with
pattern-matching like this:

isPrimary2 Red = True

isPrimary2 Green = True

isPrimary2 Blue = True

isPrimary2 _ = False

CS695 – Functional Programming – LIU 3 of 8

Constructors with data

In using data for an enumeration, the constructors stand as values on their own.
Nowwe’ll do an examplewhere the constructor takes parameters, so that it associates
some data with the value.

For this example, there are two different ways to represent points in a two-
dimensional space: the Cartesian coordinate system, or polar coordinates. We’ll
turn those into two alternates of the Coord data type.

data Coord

= Cartesian {x, y :: Float}

| Polar {angle, radius :: Float}

deriving (Show)

Now you can create a value of type Coord using the constructor as a function, and
providing its arguments. You can either use normal function notation (just separat-
ing the arguments with spaces), or use the record notation with curly braces. The
difference is only whether the order matters:

ghci> Cartesian 3 4

Cartesian {x = 3.0, y = 4.0}

ghci> Cartesian {x=3, y=4}

Cartesian {x = 3.0, y = 4.0}

ghci> Cartesian {y=4, x=3}

Cartesian {x = 3.0, y = 4.0}

ghci> Cartesian 4 3

Cartesian {x = 4.0, y = 3.0}

Here’s a function that takes a coordinate in either notation, and ensures that it returns
a coordinate in Cartesian notation. (So the constructor of the result will never be
Polar.)

toCartesian :: Coord -> Coord

toCartesian (Cartesian x y) = Cartesian x y -- nothing to do

toCartesian (Polar a r) = Cartesian x y

where x = r * cos a

y = r * sin a

ghci> toCartesian (Cartesian 3 4)

Cartesian {x = 3.0, y = 4.0}

ghci> toCartesian (Polar 3 4)

Cartesian {x = -3.95997, y = 0.56448}

ghci> toCartesian (Cartesian 1 1)

Cartesian {x = 1.0, y = 1.0}

ghci> toCartesian (Polar (pi/4) (sqrt 2))

Cartesian {x = 0.99999994, y = 0.99999994}

4 of 8 Prof. League – Fall 2017 – Code examples from 9/21— data types

The last two entries in the above transcript show that the Cartesian coordinate (1, 1)
is equal (within some tolerance for the approximations involved in floating-point
computations) to the Polar coordinate (π

4
,
√
2).

Now let’s do a distance calculation. For two Cartesian coordinates, this is the for-
mula:

distance :: Coord -> Coord -> Float

distance (Cartesian x1 y1) (Cartesian x2 y2) =

sqrt((x1-x2)^2 + (y1-y2)^2)

But we would apply a different formula if there are two polar coordinates:

distance (Polar a1 r1) (Polar a2 r2) =

sqrt(r1^2 + r2^2 - 2*r1*r2*cos(a1-a2))

Finally, what if the coordinates are mismatched? We could force them into one or
the other, and then apply distance again. Since we already wrote toCartesian, we’ll
apply it to both coordinates.

distance c1 c2 =

distance (toCartesian c1) (toCartesian c2)

Here are some sample Cartesian coordinates we can use:

p1 = Cartesian 1 1

p2 = Cartesian 2 2

q1 = Polar (pi/4) (sqrt 2)

q2 = Polar (pi/4) (2 * sqrt 2)

Recursive types

List type

Here is a variant of the built-in list type. It’s recursive because the definition of
IntList refers to IntList in its Cons constructor. This is less flexible than the actual
built-in list because it’s monomorphic – the elements of the list must have type Int.

data IntList

= Empty

| Cons {hd :: Int, tl :: IntList}

deriving (Show)

CS695 – Functional Programming – LIU 5 of 8

This function is essentially like the built-in sum, but defined recursively on our own
IntList type. Notice how the structure of the recursive function nicely matches the
structure of the recursive type.

addList :: IntList -> Int

addList Empty = 0

addList (Cons h t) = h + addList t

Tree type

Here we define the type of a binary tree. Data can be held at both the branches
(interior nodes) and leaves. The type variable lv stands for the type of values stored
at the leaves. The type variable bv stands for the type of values stored at the branches.

data Tree lv bv

= Leaf {leafValue :: lv}

| Branch {branchValue :: bv, left, right :: Tree lv bv}

deriving (Show)

Here’s howwe can compose those constructors tomake a concrete tree – in this case,
one where the branch type is Int and the leaf type is Char.

example1 =

Branch 1

(Branch 3 (Leaf 'A') (Leaf 'B'))

(Branch 5 (Leaf 'C') (Leaf 'D'))

Recursively count how many leaves are in the tree.

countLeaves :: Tree lv bv -> Int

countLeaves (Leaf _) = 1

countLeaves (Branch _ left right) =

countLeaves left + countLeaves right

Assuming that the leaf type is integers, add the values at all the leaves.

addLeaves (Leaf x) = x

addLeaves (Branch _ left right) =

addLeaves left + addLeaves right

An example tree with integers at the leaves.

6 of 8 Prof. League – Fall 2017 – Code examples from 9/21— data types

Figure 1: The tree defined by example1

example2 =

Branch 'A'

(Leaf 3)

(Branch 'B'

(Branch 'C'

(Leaf 4)

(Branch 'D'

(Leaf 5)

(Leaf 7)))

(Leaf 9))

So we can call addLeaves on example2, but it would be a type error to call it on
example1.

ghci> addLeaves example2

28

ghci> addLeaves example1

<interactive>:1309:1-18: error:

• No instance for (Num Char) arising from a use of ‘addLeaves’

• In the expression: addLeaves example1

In an equation for ‘it’: it = addLeaves example1

CS695 – Functional Programming – LIU 7 of 8

Figure 2: The tree defined by example2

8 of 8 Prof. League – Fall 2017 – Code examples from 9/21— data types

Main program

I’m not using this for anything, but if you compile this with runghc, it requires a main,
so here it is.

main = return ()

	Enumerations
	Constructors with data
	Recursive types
	List type
	Tree type

	Main program

