
CS695 – Functional Programming – LIU 1 of 9

Notes from 9/28

Literate Haskell

A file ending with .hs is assumed to be Haskell code. It can contain comments using
this syntax:

-- Double dash for a line comment

{- Delimited comments like

this that can go on for multiple lines.

-}

But instead of a regular Haskell file, you can save your file ending with .lhs, which
stands for Literate Haskell. What that means is that you’re typing comments by de-
fault. To embed some code, you add > to the left margin of each line:

> square x = x*x

There’s no need for you to use Literate Haskell in this course, but I wanted you to un-
derstand how I’m using it to produce notes and assignment solutions. When viewing
web pages on my site that are produced with Literate Haskell, you’ll see a link to the
source just above the table of contents – which is in the upper right or the bottom
of the page. As long as the filename ends in .lhs, you can load that source directly
into ghci or use runghc on it.

Assignment 3 help/review

Let’s focus on mapLeaves.

Here was the data type:

data Tree lv bv

= Leaf {leafValue :: lv}

| Branch {branchValue :: bv, left, right :: Tree lv bv}

deriving (Show, Eq)

This is the signature we want:

mapLeaves :: (lv1 -> lv2) -> Tree lv1 bv -> Tree lv2 bv

2 of 9 Prof. League – Fall 2017 – Notes from 9/28

The -> represents the type of a function. When you have a -> b -> c you can treat
that as a function with two parameters (a and b) and the result type c. Or, the default
way that the -> is parenthesized is right-associative (a -> (b -> c)). Any function
with >1 parameter can be used this way – it is called partial application.

ghci> f x y = 3*x + 2*y -- A function with two parameters

ghci> :t f -- Its type:

f :: Num a => a -> a -> a -- Think of it as (Num -> (Num -> Num))

ghci> f 5 6 -- Complete application produces number

27

ghci> f 5 -- Partial application produces function

f 5 :: Num a => a -> a -- which has type (Num -> Num)

ghci> g = f 5 -- Can bind function to new variable

ghci> g 6 -- And then provide next parameter

27

ghci> g 8

31

Here is our implementation of mapLeaves:

mapLeaves fn (Leaf lv) = Leaf (fn lv)

mapLeaves fn (Branch bv left right) =

Branch bv (mapLeaves fn left) (mapLeaves fn right)

You should notice that most of these recursive functions on trees follow the same
structure. There are two cases, the base case for Leaf and a recursive case for Branch.
The recursive case actually uses recursion twice, on both left and right. Then it
does some other stuff outside of the recursion to merge the results together some-
how.

ghci> mapLeaves (+5) (Branch 'A' (Leaf 9) (Branch 'C' (Leaf 10) (Leaf 12)))

Branch {branchValue = 'A',

left = Leaf {leafValue = 14},

right = Branch {branchValue = 'C',

left = Leaf {leafValue = 15},

right = Leaf {leafValue = 17}}}

In that example, we’re applying (+5) to each leaf. So the values start as numbers and
remain numbers. But mapLeaves is also capable of changing the type. Here we use
show to convert the numbers to strings:

ghci> mapLeaves show (Branch 'A' (Leaf 9) (Branch 'C' (Leaf 10) (Leaf 12)))

Branch {branchValue = 'A',

left = Leaf {leafValue = "9"},

CS695 – Functional Programming – LIU 3 of 9

right = Branch {branchValue = 'C',

left = Leaf {leafValue = "10"},

right = Leaf {leafValue = "12"}}}

Or here’s an interesting example using the const function. const takes two param-
eters but returns its first one. With partial application, we can create a function that
always returns the same result. So we can keep the same tree structure and branch
values but replace every leaf value with the same string.

ghci> :t const

const :: a -> b -> a

ghci> const 9 3

9

ghci> const 9 "hello"

9

ghci> p = const "hello"

ghci> p "bye"

"hello"

ghci> p pi

"hello"

ghci> mapLeaves (const "BOO") (Branch 'A' (Leaf 9) (Branch 'C' (Leaf 10) (Leaf 12)))

Branch {branchValue = 'A',

left = Leaf {leafValue = "BOO"},

right = Branch {branchValue = 'C',

left = Leaf {leafValue = "BOO"},

right = Leaf {leafValue = "BOO"}}}

Bounded stack data type

A stack is a last-in first-out (LIFO) sequence with operations to push, pop, top. We’ll
implement a bounded stackwhere the number of elements is limited to somenumber
specified when the stack is created.

data BoundedStack a

= BoundedStack { capacity :: Int, elements :: [a] }

deriving Show

To design this, it can be helpful to first specify all the signatures of the functions.
Note: compared towhat we did in class, I changed the order of the two parameters to
push. Passing the stack after the new element to add makes some of the composition
syntax easier.

new :: Int -> BoundedStack a

push :: a -> BoundedStack a -> BoundedStack a

4 of 9 Prof. League – Fall 2017 – Notes from 9/28

pop :: BoundedStack a -> BoundedStack a

top :: BoundedStack a -> a

Creating a new stack means we specify the capacity but let the initial list of elements
be the empty list.

new n = BoundedStack { capacity = n, elements = [] }

In order to push, we need to ensure (with a guard) that the capacity is positive. Then
when we create the BoundedStack, we decrement the capacity and shove the new
elem onto the front of the list.

push elem (BoundedStack cap elems)

| cap > 0 = BoundedStack (cap-1) (elem:elems)

| otherwise = error "Sorry, stack is full"

For now, if the precondition cap > 0 is not satisfied, we’ll just use error to throw an
exception with a custom message. Here are some examples using new and push.

ghci> s1 = new 3

ghci> s2 = push 7 s1

ghci> s3 = push 8 s2

ghci> s4 = push 9 s3

ghci> s4

BoundedStack {capacity = 0, elements = [9,8,7]}

ghci> s5 = push 10 s4

ghci> s5

*** Exception: Sorry, stack is full

CallStack (from HasCallStack):

error, called at /home/league/c/c/cs695/20170928.lhs:160:19 in main:Main

Note that we don’t see the exception right after the last push, but only once we try
to inspect the result. This is a result of laziness in Haskell, which we’ll discuss later.

We used separate variable names (s1, s2, s3) for each stage of the computation, just
sowe can inspect themmore easily. But if you don’t need to do that, you can sequence
them together with normal function composition; such as:

ghci> push 9 (push 8 (push 7 (new 3)))

BoundedStack {capacity = 0, elements = [9,8,7]}

ghci> push 9 $ push 8 $ push 7 $ new 3

BoundedStack {capacity = 0, elements = [9,8,7]}

ghci> (push 9 . push 8 . push 7) (new 3)

BoundedStack {capacity = 0, elements = [9,8,7]}

CS695 – Functional Programming – LIU 5 of 9

You should try to write pop and top. Here are some placeholders:

pop = error "pop : not implemented yet"

top = error "top : not implemented yet"

Error management

There is the error function that takes a string and causes the program to halt (with
an exception) and displays the string. That’s a really blunt tool.

We generally don’t like error because it turns the function you’re writing into a “par-
tial function” – one that doesn’t respond properly for every possible input. (The
built-in head and tail are partial functions.)

If you do use error, it’s a good idea to make sure the string is searchable within the
code:

error "BoundedStack: pop: not implemented"

vs

error "not implemented"

or

error "OOPS"

which will make those messages harder to find.

The Maybe type

This type is Haskell’s answer to “null pointers”. It’s equivalent to this data type:

data Maybe a

= Just a

| Nothing

A function in the standard Haskell prelude that produces a maybe value is lookup. It
searches through a list of key-value pairs for a matching key. This type of list is often
called an association list.

friends :: [(String,Int)]

friends = [("Bob",1989), ("Alice",1993), ("Carla",1979)]

6 of 9 Prof. League – Fall 2017 – Notes from 9/28

ghci> lookup "Alice" friends

Just 1993

ghci> lookup "Doug" friends

Nothing

What if we want to act on a value that has a Maybe type? You can use the case/of
construct, which does pattern-matching on the result of an expression, much like we
do when writing functions with multiple cases.

ageOf :: String -> [(String,Int)] -> Maybe Int

ageOf name people =

case lookup name people of
Nothing -> Nothing

Just year -> Just (2017 - year)

So the above function performs the lookup of the name to retrieve a year, and then
subtracts the year from 2017 to determine the person’s age. But if the lookup fails, it
handles that and also just returns Nothing for the person’s age.

ghci> ageOf "Alice" friends

Just 24

ghci> ageOf "Bob" friends

Just 28

ghci> ageOf "Doug" friends

Nothing

The Either type

This is another way to signal errors or unusual conditions in Haskell.

data Either a b

= Left a

| Right b

Typically, the Right constructor is used as the correct result, and the Left con-
structor is used for some erroneous result. But we can also just use Either and
the Left/Right constructors to unify two types into a common one. Recall that lists
must contain elements of the same type, so it’s an error to try to have a list containing
both numbers and characters:

ghci> [5,7,8]

[5,7,8]

ghci> ['a','b','c']

"abc"

ghci> ['a',7,8,'c']

<interactive>:260:6: error:

• No instance for (Num Char) arising from the literal ‘7’

CS695 – Functional Programming – LIU 7 of 9

One way around this is to construct a list of Either values, where we use Left to tag
characters, or Right to tag numbers.

ghci> stuff = [Left 'a', Right 7, Right 8, Left 'c']

ghci> :t stuff

stuff :: Num b => [Either Char b] -- List of either char or number

To use Either for errors, we can define a special-purpose version of lookup that
produces a custom error message tagged with Left if the key is not found.

myLookup :: String -> [(String,a)] -> Either String a

myLookup key list =

case lookup key list of
Nothing -> Left ("key not found: " ++ key)

Just value -> Right value

ghci> myLookup "Alice" friends

Right 1993

ghci> myLookup "Bob" friends

Right 1989

ghci> myLookup "Doug" friends

Left "key not found: Doug"

Here’s an interesting function that keeps all the Right values in a list and throws away
all the Left values.

rights :: [Either a b] -> [b]

rights [] = []

rights (Left _ : xs) = rights xs

rights (Right x : xs) = x : rights xs

Functors

In Haskell, Functor is a type class. That means it describes a set of types that have
particular properties or functions. You can think of Functor as describing types that
are mappable: Lists are mappable; Maybe is mappable; and the right side of Either
is mappable.

ghci> :t map -- map is specific to lists

map :: (a -> b) -> [a] -> [b]

ghci> :t fmap -- fmap works for any functor

fmap :: Functor f => (a -> b) -> f a -> f b

ghci> map (+4) [1..5]

[5,6,7,8,9]

8 of 9 Prof. League – Fall 2017 – Notes from 9/28

ghci> fmap (+4) [1..5] -- on lists, fmap same as map

[5,6,7,8,9]

ghci> fmap (+4) (Just 5) -- Maybe is a functor

Just 9

ghci> fmap (+4) Nothing

Nothing

ghci> fmap (+4) (Right 5) -- Either is a functor,

Right 9

ghci> fmap (+4) (Left 5) -- but only on a Right value

Left 5

Let’s specify that Tree is a functor instance. Like Either, the Tree takes two type
variables. To simplify, we’ll demonstrate this using a new type Tree1 that just takes
one type variable. It won’t store any data at the branches, just at the leaves.

data Tree1 a

= Leaf1 a

| Branch1 (Tree1 a) (Tree1 a)

deriving Show

instance Functor Tree1 where
fmap fn (Leaf1 a) = Leaf1 (fn a)

fmap fn (Branch1 left right) =

Branch1 (fmap fn left) (fmap fn right)

exampleTree :: Tree1 Int

exampleTree =

Branch1 (Branch1 (Leaf1 5) (Leaf1 6))

(Branch1 (Branch1 (Leaf1 7) (Leaf1 8))

(Leaf1 9))

ghci> fmap (*2) exampleTree

Branch1 (Branch1 (Leaf1 10) (Leaf1 12))

(Branch1 (Branch1 (Leaf1 14) (Leaf1 16)) (Leaf1 18))

ghci> fmap show exampleTree

Branch1 (Branch1 (Leaf1 "5") (Leaf1 "6"))

(Branch1 (Branch1 (Leaf1 "7") (Leaf1 "8")) (Leaf1 "9"))

ghci> fmap (const "Yow") exampleTree

Branch1 (Branch1 (Leaf1 "Yow") (Leaf1 "Yow"))

(Branch1 (Branch1 (Leaf1 "Yow") (Leaf1 "Yow")) (Leaf1 "Yow"))

Main program

I’m not using this for anything, but if you compile this with runghc, it requires a main,
so here it is.

CS695 – Functional Programming – LIU 9 of 9

main = return ()

	Literate Haskell
	Assignment 3 help/review
	Bounded stack data type
	Error management
	The Maybe type
	The Either type
	Functors

	Main program

