
CS695 – Functional Programming – LIU 1 of 8

Figure 1: Function composition

Notes from 10/5

Feedback on how it’s going

• Slow down!
• Confusion about type signatures
• It seems like the GitLab forum is really helpful for those who use it; check it out!

Function composition

Functional programming uses several different operators for combining functions
in different ways. The simplest is the compose operator, whose syntax is just a dot
(period), surrounded by spaces. Here is the mathematical notation, followed by the
Haskell notation:

(f ◦ g)(x) = f(g(x))

(f . g) x == f (g x)

Thediagram shows how the two functions are composed, with the output of the right
one leading to the input of the left.

Here are some examples with function composition:

ghci> twice x = 2*x

ghci> square x = x*x

ghci> (twice . square) 5

50

ghci> (square . twice) 5

100

It can be a little surprising that this works right-to-left, but it’s the tradition in the
mathematical notation. Another functional language, Elm, uses << for this right-to-
left composition, and >> for left-to-right. We can of course define these operators in
Haskell too:

2 of 8 Prof. League – Fall 2017 – Notes from 10/5

ghci> (>>) = flip (.)

ghci> (square >> twice) 5

50

ghci> (twice >> square) 5

100

We used the built-in flip function to reverse the order of the arguments to the com-
pose operator (.).

With partial application

Composition can get a little more interesting when the pieces we’re gluing together
are themselves the result of partial applications. So here’s a function with two argu-
ments that we can partially apply:

ghci> f x y = 2*x + 3*y

ghci> g = f 5

ghci> g 7

31

ghci> g 9

37

And here’s a composition:

ghci> (f 5 . f 6 . f 7) 8

388

Toconvince ourselves that this result is correct, we canwork through a typical deriva-
tion, like:

(f 5 . f 6 . f 7) 8 == (Peel off the right-most function)

(f 5 . f 6) (f 7 8) == (Substitute definition of f)

(f 5 . f 6) (2*7 + 3*8) == (Arithmetic)

(f 5 . f 6) 38 == (Repeat)

f 5 (f 6 38) ==

f 5 (2*6 + 3*38) ==

f 5 126 ==

2*5 + 3*126 ==

388

Withmonadic functions

In the assignment 4, we used a different kind of composition operator: (>=>). This is
for composing functions that producemonadic values, for example, Maybe values. So

a04.html

CS695 – Functional Programming – LIU 3 of 8

applied to Maybe, each function in the pipeline has the option of producing Nothing,
in which case that is just returned. If it produces Just, then the value is sent to the
next function.

There is also a version (<=<) that does right-to-left composition, more like the stan-
dard (.) operator. To use either of these, you need an import declaration. Below
are some examples. We’ll define a half function that only works on even numbers;
and then a square that refuses to multiply if the number is too large!

import Control.Monad

ghci> half x = if even x then Just (x `div` 2) else Nothing

ghci> square x = if x > 100 then Nothing else Just (x*x)

ghci> (half >=> square) 20

Just 100

ghci> (half >=> square) 240 // square returns Nothing

Nothing

ghci> (half >=> square) 9 // half returns Nothing

Nothing

Assignment 4 solutions

The complete A4 solutions have been posted. In class, we spent a little more time on
isEmpty and isFull, which I defined this way:

isFull :: BoundedStack a -> Bool

isFull (BoundedStack cap _) = cap <= 0

isEmpty :: BoundedStack a -> Bool

isEmpty (BoundedStack _ []) = True

isEmpty (BoundedStack _ (_:_)) = False

Fullness is based only on the capacity; we don’t care about what elements are in the
stack. On the other side, emptiness is based only on the elements: they are either
the empty list, or there’s at least one element (but we don’t care what it is).

Interestingly, after presenting this in class, I looked at the implementation I wrote
previously, and found that I approached them quite differently. Rather than using
the BoundedStack constructor to pattern-match, I used the field names capacity
and elements, and then composed them! (null is a Boolean function on lists that
returns True if the list is empty.)

isFull :: BoundedStack a -> Bool

isFull = (<= 0) . capacity

isEmpty :: BoundedStack a -> Bool

isEmpty = null . elements

a04sol.html

4 of 8 Prof. League – Fall 2017 – Notes from 10/5

Monoids

We previously learned about Functor, which has an fmap. If Functor describes
something that is “mappable”, then Monoid describes something that is “appendable”.
To use Monoids, we need an import:

import Data.Monoid

A type can be a Monoid if it supports two basic operations:

ghci> :i Monoid

class Monoid a where

mempty :: a

mappend :: a -> a -> a

• mempty produces a value of the type that represents nothing, such as an empty list or
Nothing.

• mappend takes two values of the type and combines them together to make a new
value that somehow includes both.

List monoid

The simplest demonstration of a Monoid is the list type, where mempty is the empty
list, and mappend is the list concatenation operator (++).

ghci> mempty :: [Int]

[]

ghci> mappend [1..5] [6..9]

[1,2,3,4,5,6,7,8,9]

Like any function with two parameters, you can use mappend infix or there’s an op-
erator (<>) that is equivalent:

ghci> [1..5] `mappend` [6..9]

[1,2,3,4,5,6,7,8,9]

ghci> [1..5] <> [6..9]

[1,2,3,4,5,6,7,8,9]

ghci> "Hello" <> "World"

"HelloWorld"

There is also a third operation in Monoid, derivable from the other two: mconcat takes
a list of elements and appends all of them together in sequence:

ghci> mconcat ["Alice", "Bob", "Charlie"]

"AliceBobCharlie"

CS695 – Functional Programming – LIU 5 of 8

Tuple monoid

So that’s pretty simple for lists (including strings), but what about other types? A
tuple is a monoid if its element types are monoids. For example, here is mappend
(aka (<>)) applied to a tuples of strings:

ghci> ("Alice", "Bob") <> ("Jones", "Smith")

("AliceJones","BobSmith")

ghci> ("Alice", "Bob", "Carol") <> ("Jones", "Smith", "Patel")

("AliceJones","BobSmith","CarolPatel")

Question: What is mempty when instantiated to a pair of strings?

Maybemonoid

The Maybe type is also amonoid, if its element type is amonoid. The mempty of course
is Nothing. And then mappend essentially joins the Just values, ignoring cases where
it finds Nothing.

ghci> mempty :: Maybe [Int]

Nothing

ghci> mappend (Just [1..4]) (Just [2..8])

Just [1,2,3,4,2,3,4,5,6,7,8]

ghci> mappend (Just [1..4]) Nothing

Just [1,2,3,4]

ghci> mappend Nothing (Just [1..4])

Just [1,2,3,4]

ghci> mappend Nothing Nothing

Nothing

ghci> mconcat [Just "Alice", Nothing, Just "Bob", Just "Carol", Nothing]

Just "AliceBobCarol"

Defining a treemonoid

Can we define a Monoid instance for a tree? Previously we made a tree data type
where both the branches and leaves carried values, of different types. That is a little
difficult to reconcile with the expectations of Monoid, because there was no such
thing as a completely empty tree.

So let’s design a different kind of tree. In this one, Leaf is just an empty constructor,
with no value attached at all. Values can be stored at branches. Since each of the
left and right subtrees can be an empty Leaf, our branches essentially can have
zero, one, or two children. (And if there’s one child, we can distinguish whether it’s
a left child or a right child.)

6 of 8 Prof. League – Fall 2017 – Notes from 10/5

data Tree a

= Leaf

| Branch { value :: a, left, right :: Tree a }

deriving (Show)

Here are a couple of sample trees:

sample1 :: Tree String

sample1 =

Branch "A"

(Branch "K"

(Branch "M"

Leaf

(Branch "Q" Leaf Leaf))

(Branch "P" Leaf Leaf))

Leaf

sample2 :: Tree String

sample2 =

Branch "B"

(Branch "S"

Leaf

(Branch "C"

(Branch "D" Leaf Leaf)

(Branch "F" Leaf Leaf)))

(Branch "R" Leaf Leaf)

It’s helpful if we can print these out in some way. Here’s a set of functions I wrote to
do some crude ASCII representation of the trees.

prettyPrint :: Show a => String -> Tree a -> String

prettyPrint indent Leaf = indent ++ "- *\n"

prettyPrint indent (Branch v Leaf Leaf) =

indent ++ "- " ++ show v ++ "\n"

prettyPrint indent (Branch v l r) =

indent ++ "- " ++ show v ++ "\n" ++ prettyPrint tab l ++ prettyPrint tab r

where tab = indent ++ " |"

printTree :: Show a => Tree a -> IO ()

printTree = putStrLn . prettyPrint ""

Their output:

CS695 – Functional Programming – LIU 7 of 8

ghci> printTree sample1

- "A"

|- "K"

| |- "M"

| | |- *

| | |- "Q"

| |- "P"

|- *

ghci> printTree sample2

- "B"

|- "S"

| |- *

| |- "C"

| | |- "D"

| | |- "F"

|- "R"

The * shows the position of an empty Leaf, but if both children are empty leaves
we just omit them. The lines and dashes make it pretty easy to see the parent-child
relationships in the trees, but here “left” is interpreted as top and “right” as bottom.

What would it mean to append two trees? One way to define it is to require that the
value types are also monoids, and then we merge together corresponding branches
in the tree structure. In these examples, the roots A and Bwould merge into AB. Their
left childrenwouldmerge into KS.The first tree’s root doesn’t have a right child, so the
result would use the right child of the second tree. Here’s the definition of a Monoid
instance:

instance Monoid a => Monoid (Tree a) where
mempty = Leaf

mappend Leaf Leaf = Leaf

mappend Leaf br = br

mappend br Leaf = br

mappend (Branch v1 l1 r1) (Branch v2 l2 r2) =

Branch (mappend v1 v2)

(mappend l1 l2)

(mappend r1 r2)

In the final case – appending two branches – the (mappend v1 v2) looks like a re-
cursive call, but it really isn’t. That’s because it’s being used at a different type. So if
the tree contains string values, it is appending the strings. When mappend is applied
to the left and right subtrees, that definitely is recursive.

Here is the result on our two trees, first in one direction:

8 of 8 Prof. League – Fall 2017 – Notes from 10/5

ghci> printTree (sample1 <> sample2)

- "AB"

|- "KS"

| |- "M"

| | |- *

| | |- "Q"

| |- "PC"

| | |- "D"

| | |- "F"

|- "R"

and then the other:

ghci> printTree (sample2 <> sample1)

- "BA"

|- "SK"

| |- "M"

| | |- *

| | |- "Q"

| |- "CP"

| | |- "D"

| | |- "F"

|- "R"

Or you can join a tree with itself:

ghci> printTree (sample1 <> sample1)

- "AA"

|- "KK"

| |- "MM"

| | |- *

| | |- "QQ"

| |- "PP"

|- *

Main program

I’m not using this for anything, but if you compile this with runghc, it requires a main,
so here it is.

main = return ()

	Feedback on how it’s going
	Function composition
	With partial application
	With monadic functions

	Assignment 4 solutions
	Monoids
	List monoid
	Tuple monoid
	Maybe monoid
	Defining a tree monoid

	Main program

