
CS695 – Functional Programming – LIU 1 of 12

Notes from 10/12

import Data.Monoid

Some follow-up from A5

To some degree, you can use types to guide the code. We call this “type-directed
programming.” I’ll illustrate it with examples from the first part of assignment 5.

Suppose we already wrote the maybeCapitalize function – I’ll add it with an error

placeholder here:

maybeCapitalize :: String -> String

maybeCapitalize = error "TODO"

Now we want write titleCase. We know it involves words, which splits strings into
lists; and unwords, which joins them back together again. Here are their types:

words :: String -> [String]

unwords :: [String] -> String

We want to capitalize each word in the list, so really we’ll be using the capitalization
with map, at this type:

map maybeCapitalize :: [String] -> [String]

But how to compose these pieces together? The diagram summarizes what we have,
and the larger box at the bottom, labeled titleCase, shows how they should be com-
posed. We can almost derive this entirely from the types – there just aren’t many
choices for connecting these functions together such that the types of inputs and
outputs match up correctly.

However, there are some variations in the syntax we use for this composition. In
this first attempt, we use parentheses to indicate the ordering: apply words to the
argument s first, then feed the result into map maybeCapitalize, then feed that into
unwords:

titleCase1 :: String -> String

titleCase1 s = unwords (map maybeCapitalize (words s))

a05sol.html

2 of 12 Prof. League – Fall 2017 – Notes from 10/12

Figure 1: Composing titleCase from other functions

The function applications must be grouped to the right using parentheses. You’ve
probably seen me use the $ operator before. It just represents function application,
so f $ x is exactly the same as f x operationally; the only difference is in the prece-
dence and associativity.

Normallywhen things are placed side-by-side in a function application, you associate
to the left. So we interpret f x y z as though it were written (((f x) y) x). If you
want it grouped to the right, as in titleCase1, then you can place the $ operator
between the items: f $ x $ y $ z is interpreted as (f $ (x $ (y $ z))). So here
we rewrite it using $ and we don’t need parentheses:

titleCase2 :: String -> String

titleCase2 s = unwords $ map maybeCapitalize $ words s

Another option is to use the function composition operator, parenthesize the entire
composition, and then apply it as a whole to the argument:

titleCase3 :: String -> String

titleCase3 s = (unwords . map maybeCapitalize . words) s

Once you’ve got that, a lot ofHaskell programmerswould do a transformation known
as “Eta reduction” (after the Greek letter η). This transformation will take a function
of the form:

f x = (......something......) x

and – as long as x does not appear at all in the something section – we can eliminate
the argument and just say that the function titleCase4 is the composition of these
other functions directly:

titleCase4 :: String -> String

titleCase4 = unwords . map maybeCapitalize . words

CS695 – Functional Programming – LIU 3 of 12

Of course, this is not the completely correct version of titleCase from the assign-
ment. This one uses maybeCapitalize on all the words, whereas the correct solu-
tion should unconditionally capitalize the first, and only use maybeCapitalize on
the rest.

Monoid follow-up

A type is a monoid if it has an “empty” value, and an “append” function (aka <>), and
they obey the following laws:

• mempty <> x == x (left-identity law)
• x <> mempty == x (right-identity law)
• (x <> y) <> z == x <> (y <> z) (associative law)

So you can think of “monoid” asmeaning “appendable”, but there are other legitimate
ways to interpret these laws too.

Numeric monoids

These laws should look pretty familiar, because they’re the same laws we have for
addition and multiplication over integers and real numbers. For addition, mempty
would be the additive identity (zero). For multiplication, it would be the multiplica-
tive identity (one).

Since there are at least these two ways to form monoids over numbers, we don’t
automatically have instances of Monoid for Int and Float — it would be ambigu-
ous whether you want the addition version or the multiplication version. However,
Haskell does have a way to select them, using the constructors (and types) named
Sum or Product:

ghci> mempty :: Sum Int -- Produce the additive identity

Sum {getSum = 0}

ghci> mempty :: Sum Float

Sum {getSum = 0.0}

ghci> mempty :: Product Int -- Multiplicative identity

Product {getProduct = 1}

ghci> mempty :: Product Float

Product {getProduct = 1.0}

You can then add and multiply using (<>), though it’s pretty awkward:

ghci> Sum 3 <> Sum 5 -- Using monoid for 3+5

Sum {getSum = 8}

ghci> Product 3 <> Product 5 -- Using monoid for 3*5

Product {getProduct = 15}

4 of 12 Prof. League – Fall 2017 – Notes from 10/12

ghci> mconcat $ map Sum [1..10] -- Sum of list

Sum {getSum = 55}

ghci> mconcat $ map Product [1..10] -- Product of list

Product {getProduct = 3628800}

Those last two examples use mconcat, which is a third method in the Monoid class.
It has this type:

mconcat :: Monoid a => [a] -> a

and should obey these laws:

• x <> y = mconcat [x,y]

• mconcat [] == mempty

• mconcat (h:t) == h <> mconcat t

So it just repeatedly applies mappend to whatever is in the list.

Orderingmonoid

Haskell features a compare function in its Ord type class. The type of compare is:

compare :: Ord a => a -> a -> Ordering

where Ordering is defined as follows:

data Ordering = LT | EQ | GT

So it’s just an enumeration of these three tags, representing whether the values being
compared are less-than, equal, or greater:

ghci> compare 3 5

LT

ghci> compare 3 3

EQ

ghci> compare 5 3

GT

ghci> compare "amy" "alice"

GT

Using compare and Ordering rather the usual comparison operators (<, >, <=, etc.)
allows us to discriminate the three possibilities without an if-else chain. Consider
these:

CS695 – Functional Programming – LIU 5 of 12

-- Version 1: if-else chain

if actual < expected then "Too small"

else if actual > expected then "Too big"

else "You got it!"

-- Version 2: Ordering and case

case compare actual expected of
LT -> "Too small"

GT -> "Too big"

EQ -> "You got it!"

The interesting thing about Ordering for our present discussion is that it’s a monoid
– although, interestingly, it doesn’t obey all the monoid laws! The empty value is EQ:

ghci> mempty :: Ordering

EQ

Then the append operation results in the left operand, unless it’s EQ – then it uses the
right operand.

ghci> LT <> LT

LT

ghci> LT <> EQ

LT

ghci> LT <> GT

LT

ghci> GT <> LT

GT

ghci> GT <> EQ

GT

ghci> GT <> GT

GT

ghci> EQ <> LT

LT

ghci> EQ <> GT

GT

ghci> EQ <> EQ

EQ

The overall effect is that two comparisons can be merged, and the second is used to
break a tie in the first. This is helpful for various kinds of lexicographic ordering. For
example, we might have a type representing a person, which carries their first and
last names, and date of birth:

data Person = Person { firstName, lastName :: String, birthDate :: Int }

deriving (Show, Eq)

6 of 12 Prof. League – Fall 2017 – Notes from 10/12

alice = Person "Alice" "Jones" 19881015

bob = Person "Bob" "Danforth" 19930324

chuck = Person "Chuck" "Jones" 19120921

So here is a comparison function that checks the last name, and moves on to the first
only if the last names are EQ.

compareLastFirst p1 p2 =

compare (lastName p1) (lastName p2) <>

compare (firstName p1) (firstName p2)

ghci> compareLastFirst alice bob

GT

ghci> compareLastFirst alice chuck

LT

ghci> compareLastFirst alice alice

EQ

Or you can order by birth date, then names:

compareAge p1 p2 =

compare (birthDate p1) (birthDate p2) <>

compareLastFirst p1 p2

ghci> compareAge alice bob

LT

ghci> compareAge alice chuck

GT

If you’d like to install one of these as the default way to compare Person values, we
can declare an instance of the Ord class:

instance Ord Person where
compare = compareLastFirst

Now you have < and <= and other comparison operators that work too:

ghci> alice < bob

False

ghci> alice < chuck

True

ghci> chuck >= chuck

True

CS695 – Functional Programming – LIU 7 of 12

BoundedStackmonoid

Finally, let’s revisit the BoundedStack monoid from the assignment. I’ll repeat the
essential definitions:

data BoundedStack a

= BoundedStack { capacity :: Int, elements :: [a] }

deriving (Show, Eq)

new :: Int -> BoundedStack a

new n = BoundedStack { capacity = n, elements = [] }

push :: a -> BoundedStack a -> Maybe (BoundedStack a)

push elem (BoundedStack cap elems)

| cap > 0 = Just $ BoundedStack (cap-1) (elem:elems)

| otherwise = Nothing

and now here’s the instance:

instance Monoid (BoundedStack a) where
mempty = new 0

mappend (BoundedStack cap1 elems1) (BoundedStack cap2 elems2) =

BoundedStack (cap1+cap2) (mappend elems1 elems2)

The capacity of themerged stack is the sum of the capacities of the original ones, and
the elements are likewise appended.

There seems to be some discretion in the definition of mempty – sure it should return
an empty stack, but what should the capacity be? Does it need to be zero?

Zero is a good choice because it’s the only one that will obey the monoid identity
laws. Otherwise, if mempty is defined to be, say, new 5 – you end up with this:

ghci> Just s1 = push 7 (new 3)

ghci> s1

BoundedStack {capacity = 2, elemetns = [7]}

ghci> s1 <> mempty

BoundedStack {capacity = 7, elements = [7]}

This is technically a violation because s1 <> mempty does not equal s1. (Even so,
you could get away with this definition for most purposes, if you prefer it for some
reason.)

8 of 12 Prof. League – Fall 2017 – Notes from 10/12

Explanation of type classes

We’ve been using type classes such as Monoid, Functor, Eq, Ord, and Show. Basically, a
type class defines a set of consistent operations over specified types, which are called
instances of the class. This is an effective way to handle “overloading” – the same
function name can be defined differently on different types.

Here’s an example where we define types representing different two-dimensional ge-
ometric shapes (Circle, Rectangle), and then a function area that’s defined differently
for different shapes.

data Circle = Circle { centerX, centerY, radius :: Float }

deriving Show

data Rectangle = Rectangle { x1, y1, x2, y2 :: Float }

deriving Show

These are two completely distinct types, but we can define a common interface over
their values:

class Shape a where
area :: a -> Float

bump :: a -> a

The area function should take a value of an instance of Shape, and calculate its area,
returning a single floating-point number. The bump function will move the shape
within the coordinate system by offseting its coordinates by +1 in both dimensions.

Now here are the instances for our two shapes:

instance Shape Circle where
area (Circle x y r) = pi * r * r

bump (Circle x y r) = Circle (x+1) (y+1) r

instance Shape Rectangle where
area (Rectangle x1 y1 x2 y2) = abs (x1 - x2) * abs (y1 - y2)

bump (Rectangle x1 y1 x2 y2) = Rectangle (x1+1) (y1+1) (x2+1) (y2+1)

Laziness

In many programming languages, the arguments of functions are strict – meaning
that the arguments are fully evaluated before the function is called. So f(x/0) will
crash with a division by zero no matter how f is defined – we don’t even get a chance
to run f.

CS695 – Functional Programming – LIU 9 of 12

However, in these strict languages, there are parts of the code that can be ex-
cluded from evaluation, based on specified conditions. The simplest example is an
if-then-else:

if 3 < 5 then 42 else 9/0

This code would never get to the division by zero, because the condition is true. The
other place you see this is the Boolean and/or operators. They are called “short-
circuit” operators.

3 < 1 &&

Since the left side of the && is false, the right side doesn’t matter. Whatever its value
is, the result of the entire compound expression will be false.

Similarly with a Boolean or, except that it’s short-circuited if the left side is true:

1 < 3 ||

So in mainstream languages, these short-circuit operations can guard against errors:

x != 0 && 100/x > 5

There’s no way for this to do division by zero. If x were zero, then the left side would
be false and the right side would be skipped.

Okay, so that’s the situation in many languages, where strictness is the default. But
Haskell is the opposite! It’s non-strict by default. So we say that it’s lazy – it only
ever evaluates something when you really need to see the result!

Here’s a demonstration. Suppose we generate a range of numbers that includes zero:

ghci> range = [-5..5] :: [Int]

Then we map a function that will divide by each element of the list:

ghci> map (100 `div`) range

[-20,-25,-34,-50,-100,*** Exception: divide by zero

Oops! It works for a while, but crashes when it gets to the zero. But if we only look
at specific elements that don’t crash – even if they come after the bad one – it’s no
problem:

10 of 12 Prof. League – Fall 2017 – Notes from 10/12

ghci> take 3 results

[-20,-25,-34]

ghci> results !! 4

-100

ghci> results !! 6

100

ghci> last results

20

(The !! operator looks up the list element at the given location.)

GHCI has a built-in tool called sprint for examining a value without forcing further
evaluation:

ghci> :sprint results

results = [-20,-25,-34,_,-100,_,100,_,_,_,20]

The underscores _ indicate elements that haven’t been demanded yet, so they have
not been computed. We just have the first three (due to take 3), the ones at indices
4 and 6 (due to !!), and the last one (due to last).

‘Infinite’ data structures

Laziness has lots of uses, and a few pitfalls. One interesting use we’ll explore for
now is that it enables (potentially) infinite data structures. Of course, you can’t really
represent an infinite data structure in finite memory. But we can describe the infi-
nite data structure (often recursively), and then only the parts we actually need are
calculated and kept.

A simple example is that we can define a name which represents all of the natural
numbers:

ghci> nats = [0..]

We used the .. range notation to construct a list, but there is no endpoint. So the
list potentially can go on forever. You can ask for the first three, or for any particular
element:

ghci> take 3 nats

[0,1,2]

ghci> nats !! 245

245

But if you make the mistake of asking for the length of the list… it will produce an
infinite loop, so your GHCI process will use up more and more of your computer’s
memory and everything else will get sluggish. Eventually it will have to be killed,
either by your OS when it truly eats up all the memory, or by you hitting Control-C.

CS695 – Functional Programming – LIU 11 of 12

ghci> length nats

[Ctrl-C]

Interrupted.

Here’s a really classic, clever use of an infinite data structure to compute the Fibonacci
sequence. This is the sequence that starts with 1,1 (or 0,1) and the next number is
always the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, 21…

fibs :: [Integer]

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

This definition is twice-recursive. The zipWith (+) means you’re lining up fibs

with its own tail, and then adding to produce subsequent entries in the list. The
first two entries are (and must be) given.

Again, it’s a potentially infinite list, so don’t make the mistake of printing the whole
thing or asking its length. But otherwise you can use it pretty normally. Here are the
first 10 numbers:

ghci> take 10 fibs

[1,1,2,3,5,8,13,21,34,55]

Here is the 100th:

ghci> fibs !! 100

573147844013817084101

One of the interesting properties of the Fibonacci sequence is that the ratio of con-
secutive numbers approaches the irrational number ϕ, also known as the golden
ratio. So here’s a way to generate different approximations of the golden ratio:

golden n = fromIntegral (fibs !! (n+1)) / fromIntegral (fibs !! n)

The larger n you provide, the closer the result is to ϕ:

ghci> golden 5

1.625

ghci> golden 10

1.6179775280898876

ghci> golden 20

1.618033985017358

ghci> golden 30

1.6180339887496482

ghci> golden 40

1.618033988749895

12 of 12 Prof. League – Fall 2017 – Notes from 10/12

Threading state through recursion

I did not explain this very well. We’ll visit it again next class.

data Tree a

= Leaf

| Branch { value :: a, left, right :: Tree a }

deriving (Show)

sample1 :: Tree String

sample1 =

Branch "A"

(Branch "K"

(Branch "M"

Leaf

(Branch "Q" Leaf Leaf))

(Branch "P" Leaf Leaf))

Leaf

sample2 :: Tree String

sample2 =

Branch "B"

(Branch "S"

Leaf

(Branch "C"

(Branch "D" Leaf Leaf)

(Branch "F" Leaf Leaf)))

(Branch "R" Leaf Leaf)

numberNodesInOrder :: Int -> Tree a -> (Tree (a, Int), Int)

numberNodesInOrder next Leaf = (Leaf, next)

numberNodesInOrder next (Branch value left right) =

(Branch (value, middleNum) newLeft newRight, lastNum)

where (newLeft, middleNum) = numberNodesInOrder next left

(newRight, lastNum) = numberNodesInOrder (middleNum+1) right

Main program

I’m not using this for anything, but if you compile this with runghc, it requires a main,
so here it is.

main = return ()

	Some follow-up from A5
	Monoid follow-up
	Numeric monoids
	Ordering monoid
	BoundedStack monoid

	Explanation of type classes
	Laziness
	Infinite data structures

	Threading state through recursion
	Main program

