
CS695 – Functional Programming – LIU 1 of 12

Notes from 10/19

Zip

We spent some time on the zip and zipWith functions. zip takes two lists, and
combines them into a list of pairs. In each pair, the first element comes from the
first list, and the second element from the second list. The best way to understand is
examples:

ghci> zip [1..5] [4..8]

[(1,4),(2,5),(3,6),(4,7),(5,8)]

ghci> zip "try" "now"

[('t','n'),('r','o'),('y','w')]

If one list is longer than the other, the leftover elements in the longer list are just
ignored:

ghci> zip [1..5] [10..]

[(1,10),(2,11),(3,12),(4,13),(5,14)]

That example also illustrates that one (or both) of the lists can be infinite.

In addition to zipping together two lists, we may want to apply a function to the
results. We can do this with just map and zip used together, but it’s a little awkward
– we’d need the function passed to map to take a pair of arguments rather than two
separate arguments. But here’s an example:

multiply (a,b) = a*b

ghci> map multiply $ zip [2..6] [4..]

[8,15,24,35,48]

These results represent 2× 4, then 3× 5, then 4× 6, etc. Now look at the type of our
multiply function, and compare that to the type of the multiplication operator itself:

ghci> :t multiply

multiply :: Num a => (a, a) -> a

ghci> :t (*)

(*) :: Num a => a -> a -> a

2 of 12 Prof. League – Fall 2017 – Notes from 10/19

The difference is that one takes its operands as a pair (a,a) and the other takes them
separately. When using map with zip as above, we need the version that takes a pair.

An alternative is the function zipWith, which can map and zip at the same time, and
so it uses functions with separate arguments. Then we can just pass (*) directly,
without having to define multiply:

ghci> zipWith (*) [2..6] [4..]

[8,15,24,35,48]

The function passed to zipWith doesn’t need to be an operator, and also the types
of the lists don’t have to match. Here’s an extended example to demonstrate those
points:

copyChar :: Char -> Int -> String

copyChar c n = take n $ repeat c

The function repeat takes a value and produces in infinite list containing copies of
that value. So if we only take n, it represents n copies of c:

ghci> copyChar 'c' 5

"ccccc"

ghci> copyChar '$' 3

"$$$"

Now I can use copyChar in zipWith as follows:

ghci> zipWith copyChar "abcde" [1..]

["a","bb","ccc","dddd","eeeee"]

ghci> zipWith copyChar "abcde" $ repeat 4

["aaaa","bbbb","cccc","dddd","eeee"]

ghci> zipWith copyChar "abcde" $ [5,4..]

["aaaaa","bbbb","ccc","dd","e"]

More lazy examples

We revisited the example of recursively generating the infinite list of Fibonacci num-
bers. Here’s the code, and a diagram that helps explain what is happening:

fibs :: [Integer]

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

CS695 – Functional Programming – LIU 3 of 12

Figure 1: How fibs is calculated.

Figure 2: How runningSums [2..] is calculated.

The light arrows connecting same-colored boxes indicate that those all represent the
same location in memory, so calculating one completes the connected ones too.

Here’s another problem that we can solve with a similar technique. Suppose we want
the running sums of a (potentially infinite) list of numbers. So given input [3,8,10]
the outputwould be [0,3,11,21]. The result startswith zero because it’s the additive
identity. Then it adds one element at a time from the input list. Zero plus 3 is 3; then
add 8 to get 11; then add 10 to get 21.

ghci> runningSums [3,8,10]

[0,3,11,21]

ghci> take 10 $ runningSums [2..]

[0,2,5,9,14,20,27,35,44,54]

Here’s the definition and graphical explanation.

runningSums xs = 0 : zipWith (+) xs (runningSums xs)

Threading state

Random

Many languages have a function like rand() or random() that just returns a (pseudo-
)random number of some kind. Here’s an example in Python – it returns a random
floating-point number between 0 and 1:

>>> from random import random

>>> random()

0.9842441059136995

>>> random()

0.09433094029944189

4 of 12 Prof. League – Fall 2017 – Notes from 10/19

>>> random()

0.7783129433643198

>>> random()

0.3644603595589918

>>> [random(), random(), random()]

[0.6033139138336018, 0.640450866910694, 0.3319755729652476]

A function like this is not pure. Purity means that a function depends only on its
inputs, and cannot rely on other side effects. The call random() takes no inputs,
so purity says it must always produce the same result! Remember that one of the
benefits of pure functions is that you can substitute equal expressions, just like in
algebra. So I ought to be able to replace:

[random(), random(), random()]

with something like

let x = random()

in [x,x,x]

But of course then we’d get the same number three times, rather than three different
numbers.

What’s really going on inside the random number functions in imperative languages
like Python, Java, or C? There is some internal state that needs to be referenced and
then updated. The solution to doing this in Haskell involves making that internal
state explicit, and passing it around as needed.

Here is a simple implementation of a pseudo-random number generator (PRNG) in
Haskell.

data Seed = Seed { unSeed :: Integer }

deriving (Eq, Show)

rand :: Seed -> (Integer, Seed)

rand (Seed s) = (s', Seed s')

where
s' = (s * 16807) `mod` 0x7FFFFFFF

We’re using a new type Seed, wrapped around an Integer, to represent the state of
the generator. Then, the type of rand is:

Seed -> (Integer, Seed)

https://en.wikipedia.org/wiki/Lehmer_random_number_generator

CS695 – Functional Programming – LIU 5 of 12

Compared to rand() or random() in imperative languages, the state transformation
is explicit. This rand function takes a current state as an input, and returns the next
state as an output, along with the generated pseudo-random number. Here’s an ex-
ample of how to use it to generatemultiple numbers. First you need to seed it with an
initial state that we choose in some way, perhaps based on the current time of day or
some “entropy pool” maintained by the machine on which we’re running. For these
examples, I’ll just mash on the number row of my keyboard to generate initial seeds.

ghci> s0 = Seed 20924

ghci> rand s0

(351669668,Seed {unSeed = 351669668})

So starting with the seed 20924, our PRNG produced 351669668, and the new state
is also 351669668. Never mind that the state and the generated number are the same
– that’s just one of the quirks of this simple type of PRNG. Others algorithms use
states that are hard to deduce from the generated numbers.

Because rand is a pure function, if we pass the same seed, we get the same result.
But the way we’re supposed to use it is to take the seed returned by one call, and use
it in the next call, like this:

ghci> s0 = Seed 982734

ghci> (r0,s1) = rand s0

ghci> (r1,s2) = rand s1

ghci> (r2,s3) = rand s2

ghci> [r0,r1,r2]

[1484424809,1410237664,87406909]

Unfortunately, it’s easy to make a mistake and reuse a previous state. That leads to
repeating the same number!

ghci> s0 = Seed 287261

ghci> (r0,s1) = rand s0

ghci> (r1,s2) = rand s1

ghci> (r2,s3) = rand s1 -- Mistake! Should pass s2

ghci> [r0,r1,r2]

[533028333,1452901094,1452901094] -- Duplicates

Let’s encapsulate generating three numbers into a function, so we can get it correct
in one place, and then just call the function:

threeRandoms :: Seed -> ([Integer], Seed)

threeRandoms s0 = ([r0,r1,r2], s3)

where (r0, s1) = rand s0

(r1, s2) = rand s1

(r2, s3) = rand s2

6 of 12 Prof. League – Fall 2017 – Notes from 10/19

ghci> threeRandoms (Seed 3453)

([58034571,429459059,225867046],Seed {unSeed = 225867046})

If we want six random numbers, we could call threeRandoms twice, and compose
the results:

sixRandoms :: Seed -> ([Integer], Seed)

sixRandoms s0 = (xs ++ ys, s2)

where (xs, s1) = threeRandoms s0

(ys, s2) = threeRandoms s1

So again, we thread the state through the two calls to threeRandoms. This is a pat-
tern we’ll see over and over, because it applies to lots of different problems – not
just generating random numbers. Eventually we’ll learn some notation that makes
it a little more direct and less error-prone, but behind the scenes we’re still passing
around the state like this.

ghci> sixRandoms (Seed 282)

([4739574,201125279,173303775,728721093,516171210,1603076237],Seed {unSeed = 1603076237})

For convenience, instead of generating a constant number of randoms at a time, we
could just generate an infinite list of them. Interestingly, this one can’t have the same
type as usual state-passing functions – state -> (result, state) – because we
may need to use the state infinitely many times, so there is no final state we can
return. So it just takes the Seed and continues to use it as long as needed.

allRandoms :: Seed -> [Integer]

allRandoms s0 = r0 : allRandoms s1

where (r0, s1) = rand s0

ghci> take 10 $ allRandoms (Seed 211)

[3546277,1620219070,929265530,1664681726,888815766,

430330630,1989458961,516373737,711980232,472878140]

We can map over the infinite random stream to produce models of coin flips (True
for heads, False for tails) or dice rolls (integers in range [1..6]).

coinFlips :: Seed -> [Bool]

coinFlips s0 = map even $ allRandoms s0

diceRolls :: Seed -> [Integer]

diceRolls = map (succ . (`mod` 6)) . allRandoms

CS695 – Functional Programming – LIU 7 of 12

ghci> take 10 $ diceRolls (Seed 202)

[5,3,1,1,6,1,4,4,4,3]

ghci> take 10 $ coinFlips (Seed 202)

[True,True,True,True,False,True,False,False,False,True]

To test the quality of our PRNG, we can see whether, over the long run, we get the
expected number of results for coin flips or dice rolls. For example, with n coin flips,
we expect n

2
heads:

countHeads n = length $ filter id $ take n $ coinFlips (Seed 299)

ghci> countHeads 10

6

ghci> countHeads 100

47

ghci> countHeads 1000

501

ghci> countHeads 10000

5002

ghci> countHeads 100000

50042

That’s really good; we’re getting pretty close to 50%. For coin flips, let’s count how
many times we roll a one. It should be one in six, which is 1

6
= 0.1666 . . .

countSnakeEye n = length $ filter (==1) $ take n $ diceRolls (Seed 299)

ghci> countSnakeEye 100

13

ghci> countSnakeEye 1000

162

ghci> countSnakeEye 10000

1659

ghci> countSnakeEye 100000

16582

ghci> countSnakeEye 1000000

166880

Traversals

We’ve seen how to thread the PRNG state through functions like threeRandoms and
sixRandoms, so now let’s try a more sophisticated example: passing around the state
as we traverse a tree in a particular order.

We’ll reuse the same tree data type as before, where the Leaf is just an empty place-
holder, and the Branch carries a value as well as a left and right sub-tree.

8 of 12 Prof. League – Fall 2017 – Notes from 10/19

data Tree a

= Leaf

| Branch { value :: a, left, right :: Tree a }

deriving (Show)

And here’s a sample tree we used before:

sample1 :: Tree String

sample1 =

Branch "A"

(Branch "K"

(Branch "M"

Leaf

(Branch "Q" Leaf Leaf))

(Branch "P" Leaf Leaf))

Leaf

I’ll also include the pretty-printing code at the bottom of this file, so we can do this:

ghci> printTree sample1

- "A"

|- "K"

| |- "M"

| | |- *

| | |- "Q"

| |- "P"

|- *

The first thing we’ll try is to keep the same tree shape but substitute each value with
a pseudo-random integer. The figure shows how a pre-order traversal on this tree
would operate, visiting each node before its left and then right subtrees.

The labels on the curvy green line show subsequent states produced each time rand
is called. The implementation of preorderRand is below:

preorderRand :: Tree a -> Seed -> (Tree Integer, Seed)

preorderRand Leaf s0 = (Leaf, s0)

preorderRand (Branch _ left right) s0 =

(Branch newValue newLeft newRight, s3)

where (newValue, s1) = rand s0

(newLeft, s2) = preorderRand left s1

(newRight, s3) = preorderRand right s2

Notice that its type includes the usual signature of a state-passing function: state
-> (result, state). In this case the initial tree has type Tree a because we don’t

CS695 – Functional Programming – LIU 9 of 12

Figure 3: Threading state around a pre-order traversal

care what values it stores; we’ll just be replacing them. The resulting type is Tree
Integer.

Notice also the usual state-threading, how we’re given s0, and pass that to rand,
producing s1. Then we give s1 to preorderRand left, producing s2. Then we use
s2 in preorderRand right, producing s3.

Here are a couple of trees in the shape of sample1 but with random values:

ghci> (t0, s1) = preorderRand sample1 (Seed 2924)

ghci> printTree t0

- 49143668

|- 1323907628

| |- 837437229

| | |- *

| | |- 199685365

| |- 1742472941

|- *

ghci> (t1, s2) = preorderRand sample1 s1

ghci> printTree t1

- 508225248

|- 1199279017

| |- 927977

| | |- *

| | |- 564123910

| |- 90253865

|- *

10 of 12 Prof. League – Fall 2017 – Notes from 10/19

Generalizing

Threading state isn’t just for random numbers; we actually can express many other
computations this way. So instead of hard-coding rand into it, let’s take the state-
transformation function as an extra parameter, called gen in this definition:

preorderState :: (a -> s -> (b,s)) -> Tree a -> s -> (Tree b, s)

preorderState gen Leaf s0 = (Leaf, s0)

preorderState gen (Branch value left right) s0 =

(Branch newValue newLeft newRight, s3)

where (newValue, s1) = gen value s0

(newLeft, s2) = preorderState gen left s1

(newRight, s3) = preorderState gen right s2

You can tell gen takes the role of a state transformer because its type includes s ->

(b,s). Unlikewhenweused rand, we’ll also let it take the current value of the branch,
so it can use that value to generate a new one. We can get back exactly the same
preorderRand behavior by passing const rand:

ghci> (t0, s1) = preorderState (const rand) sample1 (Seed 2924)

ghci> printTree t0

- 49143668

|- 1323907628

| |- 837437229

| | |- *

| | |- 199685365

| |- 1742472941

|- *

It will also support other uses. Here’s one that keeps track of an integer counter, and
pairs it with the value:

withCounter :: a -> Int -> ((a, Int), Int)

withCounter value n = ((value, n), n+1)

For the new state, it returns n+1 so that the next time it is called, the counter has
been incremented.

ghci> (t0, _) = preorderState withCounter sample1 10

ghci> printTree t0

- ("A",10)

|- ("K",11)

| |- ("M",12)

| | |- *

CS695 – Functional Programming – LIU 11 of 12

| | |- ("Q",13)

| |- ("P",14)

|- *

Or this is kind of a neat idea: suppose we inject a new value into the root of the tree,
and then rotate all the other values around and discard the last value.

inject :: a -> a -> (a, a)

inject value next = (next, value)

ghci> (t0, _) = preorderState inject sample1 "Z"

ghci> printTree t0

- "Z"

|- "A"

| |- "K"

| | |- *

| | |- "M"

| |- "Q"

|- *

We injected the new "Z" value into the root, moved "A" into the left child, "K" into
the place of "M" and so on, and then discarded the final node, "P".

One nice thing about this generalization is that these state transformations can also
be used with other data structures, such as lists. Here’s a function to thread state
through the elements of a list:

threadList :: (a -> s -> (b,s)) -> [a] -> s -> ([b], s)

threadList gen [] s0 = ([], s0)

threadList gen (x:xs) s0 = (newHead : newTail, s2)

where (newHead, s1) = gen x s0

(newTail, s2) = threadList gen xs s1

And I’ll apply it with all the same examples as above:

ghci> threadList (const rand) "hello" (Seed 338)

([5680766,987353694,847394689,50991119,161761880],Seed {unSeed = 161761880})

ghci> threadList withCounter "hello" 5

([('h',5),('e',6),('l',7),('l',8),('o',9)],10)

ghci> threadList inject "hello" 's'

("shell",'o')

12 of 12 Prof. League – Fall 2017 – Notes from 10/19

Admin

• Exam is next week, first hour of class.
• Written only, no computers, not writing code from scratch
• I’ll have practice problems available on Friday 20th.
• Assignment 6 deadline extended, but 1-2 questions added

Main program

I’m not using this for anything, but if you compile this with runghc, it requires a main,
so here it is.

main = return ()

prettyPrint :: Show a => String -> Tree a -> String

prettyPrint indent Leaf = indent ++ "- *\n"

prettyPrint indent (Branch v Leaf Leaf) =

indent ++ "- " ++ show v ++ "\n"

prettyPrint indent (Branch v l r) =

indent ++ "- " ++ show v ++ "\n" ++ prettyPrint tab l ++ prettyPrint tab r

where tab = indent ++ " |"

printTree :: Show a => Tree a -> IO ()

printTree = putStrLn . prettyPrint ""

	Zip
	More lazy examples
	Threading state
	Random
	Traversals
	Generalizing

	Admin
	Main program

