
CS695 – Functional Programming – LIU 1 of 4

Notes from 10/26

“Lambda” notation

A lambda is an anonymous function. Normallywhen you define a function, youwrite
its name first, then parameter, then the body.

square1 x = x*x

Tomake it anonymous, you omit the name, and instead use a backslash (which looks
a bit like a Greek lowercase lambda: λ).

\x -> x*x

This is an expression not a definition – you wouldn’t write just that at the top-level
in a Haskell file. However you could still bind the expression to a name:

square2 = \x -> x*x

You can consider this to be an alternative syntax for a function definition. But the
lambda notation is most useful for passing to higher-order functions.

For example, when we do something like these examples:

ghci> map square2 [2..4]

[4,9,16]

ghci> map (*8) [2..4]

[16,24,32]

We are passing functions to map. In the first example, it’s a named function, square1.
In the second example we use a section on an operator to produce a function. Amore
general way to specify a function in that position is a lambda expression:

ghci> map (\x -> 2*x*x + 3*x - 4) [5..10]

[61,86,115,148,185,226]

Here, the lambda expression represents the polynomial 2x2 + 3x − 4, and we have
evaluated for each x in the given range.

The operator section notation can now be seen as just a shortcut for a lambda ex-
pression:

• (*2) is equivalent to (\x -> x*2)

• (3-) is equivalent to (\x -> 3-x)

2 of 4 Prof. League – Fall 2017 – Notes from 10/26

Monad operations

A type is a monad m if it provides the following two operations:

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The operator (>>=) is pronounced as “bind”, “andThen”, or sometimes “flatMap”. The
most well-understood monad types are Maybe and lists. If we specialize the types
above to Maybe and [], they are:

return :: a -> Maybe a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

return :: a -> [a]

(>>=) :: [a] -> (a -> [b]) -> [b]

We saw the Maybe version of this in Assignment 4, where I had you implement it as
andThen. It’s used to sequence together operations that may fail.

Maybemonad

Here’s a rather contrived example where someone wants to log in to their bank ac-
count, check their balance, and then transfer some money. Each of those operations
can fail, so each function returns Maybe.

login :: String -> String -> Maybe Int -- returns session ID

login user password =

if user == reverse password -- password is your username, reversed

then Just (length user) -- fake a session ID

else Nothing

checkBalance :: Int -> Maybe Float

checkBalance sessionId =

if odd sessionId -- suppose even session IDs are offline

then Just 215.38

else Nothing

transfer :: Float -> Float -> Maybe Float

transfer amount balance

| amount <= balance = Just (balance - amount)

| otherwise = Nothing

So we sequence them together as follows, and each can fail for different reasons.

a04.html

CS695 – Functional Programming – LIU 3 of 4

-- Works:

ghci> login "joe" "eoj" >>= checkBalance >>= transfer 50

Just 165.38

-- Fails because Joe doesn't have $500 to transfer

ghci> login "joe" "eoj" >>= checkBalance >>= transfer 500

Nothing

-- Fails because Fran's session ID is offline

ghci> login "fran" "narf" >>= checkBalance >>= transfer 50

Nothing

-- Fails because Bob has wrong password

ghci> login "bob" "secret" >>= checkBalance >>= transfer 50

Nothing

Of course, the unfortunate thing about Maybe in this example is that it can’t directly
tell us which step in the pipeline went wrong. But Either also forms a Monad, so
you could try using Left to display error messages!

List monad

Here’s a simple example of using (>>=) on a list of strings.

ghci> ["hello world", "this is a test", "bye for now"] >>= words

["hello","world","this","is","a","test","bye","for","now"]

Compare it to using map, where each word list stays together

ghci> map words ["hello world", "this is a test", "bye for now"]

[["hello","world"],["this","is","a","test"],["bye","for","now"]]

and you perhaps you can see why it’s sometimes called flatMap.

State monad

Last week when we worked with threading state through a calculation or traversal,
we defined a state function with a type like s -> (r, s) where s is the state and r

is the result. It turns out that this function type is itself a monad.

Substitute m a in the monad operations with s -> (a, s) and you get:

return :: a -> s -> (a, s)

(>>=) :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)

N20170919.html

4 of 4 Prof. League – Fall 2017 – Notes from 10/26

We can actually write these functions, but we’ll name them a little differently so they
don’t conflict with the real ones:

returnState :: a -> s -> (a,s)

returnState result state = (result, state)

bindState :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)

bindState action1 action2 state0 = (result2, state2)

where (result1, state1) = action1 state0

(result2, state2) = action2 result1 state1

Notice the usual careful state-passing in the where clause of the bindState function.
That little bit of state-passing logic turns is sufficient to encode everything we need
to build more elaborate stateful functions.

For example, the function threeRandoms becomes:

threeRandoms :: Seed -> ([Integer], Seed)

threeRandoms =

rand `bindState` \r1 ->

rand `bindState` \r2 ->

rand `bindState` \r3 ->

returnState [r1, r2, r3]

This has the same type as the threeRandomswe did list week, but all the state-passing
is hidden. It’s done transparently by bindState and returnState, and we get exactly
the same results.

ghci> threeRandoms (Seed 3453)

([58034571,429459059,225867046],Seed {unSeed = 225867046})

data Seed = Seed { unSeed :: Integer }

deriving (Eq, Show)

rand :: Seed -> (Integer, Seed)

rand (Seed s) = (s', Seed s')

where
s' = (s * 16807) `mod` 0x7FFFFFFF

main = putStrLn "OK"

	Lambda notation
	Monad operations
	Maybe monad
	List monad
	State monad

