
CS695 – Functional Programming – LIU 1 of 4

Notes from 11/2

import Control.Monad.State

TBD: this needs work

Monads

A type is a monad m if it provides the following two operations:

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b -- aka "bind"

returnSt a s = (a,s)

bindSt f g s0 = (b, s2)

where (a, s1) = f s0

(b, s2) = g a s1

Nothing >>= _ -> Nothing

Just 14 >>= _ -> Nothing

Just 14 >>= \a -> Just(a*2)

[4,5,6] >>= \a -> [a*2]

[4,5,6] >>= \a -> [a*2, a+5, 9]

xs >>= \a -> xs >>= \b -> xs >>= \c -> if c*c == a*a + b*b then [(a,b,c)] else []

"ABCD" >>= \c -> [succ c, pred c]

twiceM =

do a <- [4,5,6]

return (a*2)

pythag =

do a <- [1..100]

b <- [1..a]

c <- [1..100]

if c*c == a*a + b*b

then return (a,b,c)

else []

2 of 4 Prof. League – Fall 2017 – Notes from 11/2

State monad

When we worked with threading state through a calculation or traversal, we defined
a state function with a type like s -> (r, s) where s is the state and r is the result.
It turns out that this function type is itself a monad.

Substitute m a in the monad operations with s -> (a, s) and you get:

return :: a -> s -> (a, s)

(>>=) :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)

We can actually write these functions, but we’ll name them a little differently so they
don’t conflict with the real ones:

returnState :: a -> s -> (a,s)

returnState result state = (result, state)

bindState :: (s -> (a, s)) -> (a -> s -> (b, s)) -> s -> (b, s)

bindState action1 action2 state0 = (result2, state2)

where (result1, state1) = action1 state0

(result2, state2) = action2 result1 state1

Notice the usual careful state-passing in the where clause of the bindState function.
That little bit of state-passing logic turns is sufficient to encode everything we need
to build more elaborate stateful functions.

For example, the function threeRandoms becomes:

threeRandoms :: Seed -> ([Integer], Seed)

threeRandoms =

rand `bindSt` \r1 ->

rand `bindSt` \r2 ->

rand `bindSt` \r3 ->

returnState [r1, r2, r3]

This has the same type as the threeRandomswe did list week, but all the state-passing
is hidden. It’s done transparently by bindState and returnState, and we get exactly
the same results.

ghci> threeRandoms (Seed 3453)

([58034571,429459059,225867046],Seed {unSeed = 225867046})

data Seed = Seed { unSeed :: Integer }

deriving (Eq, Show)

CS695 – Functional Programming – LIU 3 of 4

threeRandsSt :: State Seed [Integer]

threeRandsSt =

do r1 <- randSt

r2 <- randSt

r3 <- randSt

return [r1,r2,r3]

randSt :: State Seed Integer

randSt = do
Seed s <- get

let s' = (s * 16807) `mod` 0x7FFFFFFF

put (Seed s')

return s'

rand :: Seed -> (Integer, Seed)

rand (Seed s) = (s', Seed s')

where
s' = (s * 16807) `mod` 0x7FFFFFFF

main = putStrLn "OK"

“do” notation

Reader monad

Substitute r -> a for m a.

returnRd :: a -> r -> a

returnRd a r = a

bindRd :: (r -> a) -> (a -> r -> b) -> r -> b

bindRd f g r = g (f r) r

ask :: r -> r

ask r = r

r Represents an environment – a value that is always available to you, but you don’t
have to explicitly pass around.

Reader example: do some calculations on a list. Then take modulo N, where N is
from the environment.

calc :: Integer -> Integer -> Integer

calc x = blop x `bindRd` \y -> returnRd (sum y)

4 of 4 Prof. League – Fall 2017 – Notes from 11/2

blop :: Integer -> Integer -> [Integer]

blop x =

cran x `bindRd` \y ->

ask `bindRd` \n ->

returnRd $ map (`mod` n) y

cran :: Integer -> Integer -> [Integer]

cran x = returnRd $ map (2^) [1..x]

Writer monad

Substitute (a,w) for m a.

returnW :: Monoid w => a -> (a,w)

returnW a = (a, mempty)

bindW :: Monoid w => (a,w) -> (a -> (b,w)) -> (b,w)

bindW (a,w1) f = (b, mappend w1 w2)

where (b,w2) = f a

tell :: Monoid w => w -> ((),w)

tell w = ((), w)

addEvens xs = sum $ filter even xs

I’d like this function to log the odd numbers that it skips when filtering.

filterW :: (a -> Bool) -> [a] -> ([a],[a])

filterW f [] = returnW []

filterW f (x:xs) =

filterW f xs `bindW` \ys ->

if f x

then returnW (x:ys)

else tell [x] `bindW` \() ->

returnW ys

addEvensW xs =

filterW even xs `bindW` \ys -> returnW (sum ys)

	Monads
	State monad

	do notation
	Reader monad
	Writer monad

