
CS695 – Functional Programming – LIU 1 of 12

Notes from 12/7

Administrative

I juggled some deadlines, and eliminated Assignment 12. See the updated schedule.

Module header

You’ll probably need some of these libraries:

stack install aeson conduit conduit-extra

stack install resourcet transformers-base

stack install QuickCheck quickcheck-special

stack install tasty tasty-hunit tasty-quickcheck

And we’ll also use overloaded strings in what follows.

{-# LANGUAGE OverloadedStrings #-}

module N20171207 where

These imports pertain to the rest of the file.

import Control.Exception (bracket)

import Control.Monad.Base (liftBase)

import Control.Monad.Trans.Resource (runResourceT)

import Data.Aeson ((.=), (.:))

import qualified Data.Aeson as Js

import qualified Data.ByteString.Lazy.Char8 as LBC

import Data.Conduit

import qualified Data.Conduit.Binary as CB

import qualified Data.Conduit.List as CL

import qualified Data.Conduit.Text as CT

import Data.Int (Int8)

import qualified Data.Text as T

import System.IO

import Test.QuickCheck (quickCheck)

import Test.QuickCheck.Special (Special(..))

import Test.Tasty

import Test.Tasty.HUnit

import Test.Tasty.QuickCheck

schedule.html

2 of 12 Prof. League – Fall 2017 – Notes from 12/7

It’s pretty commonplace to have two import statements from the same module, as
we did with Data.Aeson above. One of them is qualified, so we refer to definitions
with a prefix, like Js.encode and don’t add too much to the current namespace. The
other import is selective, it only imports a few specific defintitions to use unqualified.
We’re doing that for the Aeson operators (.=) and (.:).

Test frameworks

Testing is an important concern for software projects. Most languages have a library
to helpwith unit testing, whichmeans testing a specific function by providing certain
inputs and verifying its outputs or effects. Butwe’ll startwith another formof testing,
which is native to Haskell and functional programming.

QuickCheck

QuickCheck is a library for property-based testing, an idea that was pioneered and
matured between two functional languages, Erlang and Haskell. It has since been
ported to other languages, including Python.

In property-based testing, rather than writing specific test cases, you try to encode
general properties of your functions. Then, the testing tool generates bunches of
specific cases on its own, and tests whether your property holds for each of them. If
it finds a case where your property fails, it prints the details as a counterexample.

Any function that produces a boolean can be a property. We are expecting the
boolean to be true, so if you want a property that’s always false, just use not.

Arithmetic tests

Here’s a simple example of a property: addition should be commutative. Write that
as a function of any two integers, which produces a Bool:

prop_commutative_add :: Int -> Int -> Bool

prop_commutative_add x y =

x+y == y+x

I could test that on particular integers by invoking it directly from GHCi:

ghci> prop_commutative_add 3 4

True

But the main purpose is that quickCheck will generate the lots of arguments for me.
Here’s how we do that:

ghci> quickCheck prop_commutative_add

+++ OK, passed 100 tests.

https://hypothesis.readthedocs.io/en/latest/

CS695 – Functional Programming – LIU 3 of 12

It generated a hundred random pairs of Int values, passed them to the function, and
verified that it always returned True!

But what happens if a property fails on some input? Here’s an example using rational
numbers. We’d like it to be true that x

y
· y = x. Seems sensible, right?

prop_rational_div_mul1 :: Rational -> Rational -> Bool

prop_rational_div_mul1 x y =

(x/y) * y == x

Here’s a few manual test cases, and then we’ll ask quickCheck to evaluate it:

ghci> prop_rational_div_mul1 3 4

True

ghci> prop_rational_div_mul1 18 94

True

ghci> prop_rational_div_mul1 10231 2984

True

ghci> quickCheck prop_rational_div_mul1

*** Failed! Exception: 'Ratio has zero denominator' (after 1 test):

0 % 1

0 % 1

QuickCheck found a problem right away! We might not have thought to test it, but
our property actually isn’t valid when the demoninator y is zero!

We should restate the property, ensuring as a precondition that y ̸= 0. For that,
we use the (==>) operator. The boolean expression on the left is the precondition.
QuickCheck will generate a hundred cases that ensure the precondition is met, and
then for each of them also test the expression on the right.

prop_rational_div_mul2 :: Rational -> Rational -> Property

prop_rational_div_mul2 x y =

y /= 0 ==> (x/y)*y == x

The other change that was needed is that due to the (==>) operator, this function
produces a Property rather than a Bool.

ghci> quickCheck prop_rational_div_mul2

+++ OK, passed 100 tests.

Great, so the property holds for Rational values. What about Double? Those are
floating-point approximations, so there may be some error that creeps in. The only
change I need is in the type signature:

4 of 12 Prof. League – Fall 2017 – Notes from 12/7

prop_rational_div_mul3 :: Double -> Double -> Property

prop_rational_div_mul3 x y =

y /= 0 ==> (x/y)*y == x

ghci> quickCheck prop_rational_div_mul3

*** Failed! Falsifiable (after 1 test and 2 shrinks):

0.9749639888248032

0.8276847531797582

QuickCheck is showing us the x and y it found for which the property fails. It would
be more helpful if it also shows us the calculated value on the left side of the (==).
For that, we can switch to QuickCheck’s operator (===) (three equal signs). This is
an equality test, but if it fails then it also includes the values being compared in the
output.

prop_rational_div_mul4 :: Double -> Double -> Property

prop_rational_div_mul4 x y =

y /= 0 ==> (x/y)*y === x

ghci> quickCheck prop_rational_div_mul4

*** Failed! Falsifiable (after 4 tests and 1 shrink):

1.8746163139401988

18.173499848191607

1.874616313940199 /= 1.8746163139401988

Now it’s easier to see how close the two results are.

Enumeration tests

Types that implement the Enum typeclass have a correspondence to integers. You
can generate lists of them with the range notation ([1..5] or ['a'..'z']), and they
implement succ (successor) and pred (predecessor).

ghci> succ 5

6

ghci> pred 6

5

ghci> succ 'A'

'B'

ghci> pred 'b'

'a'

One property we might like to verify is that pred and succ are inverses! Here is that
property expressed on the Integer type:

CS695 – Functional Programming – LIU 5 of 12

prop_integer_pred_succ :: Integer -> Property

prop_integer_pred_succ x = pred (succ x) === x

ghci> quickCheck prop_integer_pred_succ

+++ OK, passed 100 tests.

That was easy! But is it true for other types that implement Enum? Here’s a generic
way to specify it:

prop_pred_succ :: (Eq a, Show a, Enum a) => a -> Property

prop_pred_succ x = pred (succ x) === x

The type variable amust implement Enum because we’re using pred/succ, but it must
also implement Eq so we can compare the results, and Show so that we can print the
counterexamples. When we test such a generic property, we need to specify the
precise signature, so QuickCheck knows what values to generate.

ghci> quickCheck (prop_pred_succ :: Integer -> Property)

+++ OK, passed 100 tests.

ghci> quickCheck (prop_pred_succ :: Char -> Property)

+++ OK, passed 100 tests.

ghci> quickCheck (prop_pred_succ :: Int -> Property)

+++ OK, passed 100 tests.

Looks pretty good. Unfortunately though, the property doesn’t hold for every sin-
gle member of Char and Int! These are bounded types – there’s a maximum and
minimum. So choosing the maximum makes succ fail:

ghci> maxBound :: Int

9223372036854775807

ghci> pred (succ (9223372036854775807 :: Int))

*** Exception: Prelude.Enum.succ{Int}: tried to take `succ' of maxBound

Thedefault generators for types like Int and Char do not easily produce some special
value like maxBound or minBound. If you choose smaller types, like 8-bit integers, you
can eventually cause it to happen. (It’s a one-in-255 chance each time, so your results
may differ.)

ghci> quickCheck (prop_pred_succ :: Int8 -> Property)

+++ OK, passed 100 tests.

ghci> quickCheck (prop_pred_succ :: Int8 -> Property)

+++ OK, passed 100 tests.

ghci> quickCheck (prop_pred_succ :: Int8 -> Property)

+++ OK, passed 100 tests.

6 of 12 Prof. League – Fall 2017 – Notes from 12/7

ghci> quickCheck (prop_pred_succ :: Int8 -> Property)

*** Failed! Exception: 'Enum.succ{Int8}: tried to take `succ' of maxBound' (after 31 tests):

127

Exception thrown while printing test case: 'Enum.succ{Int8}: tried to take `succ' of maxBound'

Someone implemented a workaround that would tell QuickCheck to generate ‘spe-
cial’ values more often than chance would suggest, exactly because they tend to be
edge cases. You just wrap the type with Special.

ghci> quickCheck (prop_pred_succ :: Special Int -> Property)

*** Failed! Exception: 'Prelude.Enum.succ{Int}: tried to take `succ' of maxBound' (after 35 tests):

Special {getSpecial = 9223372036854775807}

Exception thrown while printing test case: 'Prelude.Enum.succ{Int}: tried to take `succ' of maxBound'

ghci> quickCheck (prop_pred_succ :: Special Int -> Property)

+++ OK, passed 100 tests.

Sometimes all tests will still succeed, but it produces the failures much more often
than the default generator for Int.

Encoding tests

Now let’s move to testing a more realistic property. Often when you have data repre-
sentations in a language, you need to export and import them–maybe it’s for storing
in a binary file format, maybe for transmitting to a web API, or a database. An im-
portant property of these representations is that encoded data can be decoded again,
and you get the same result.

Here’s a simple data type for representing a geographic coordinate:

data GeoCoord = GeoCoord

{ latitude :: Double

, longitude :: Double

} deriving (Eq, Show)

We’d like to convert these coordinates into a Javascript notation (JSON) so we can
send and receive them from an API. The ‘aeson’ package has lots of tools for that,
and I imported it using a Js qualifier. Here’s an example of encoding and decoding a
number:

ghci> Js.encode pi

"3.141592653589793"

ghci> Js.decode "3.141592653589793" :: Maybe Double

Just 3.141592653589793

http://hackage.haskell.org/package/quickcheck-special

CS695 – Functional Programming – LIU 7 of 12

The type of decode is FromJSON a => ByteString -> Maybe a, so when we call it
out of context, we need to specify the expected result type. It returns Maybe because,
of course, decoding can fail if there’s a syntax error or type error:

ghci> Js.decode "3.141592653589793" :: Maybe Int

Nothing

ghci> Js.decode "3:141592653589793" :: Maybe Double

Nothing

We can specify how a GeoCoord gets converted to JSON by implemented the type
class ToJSON.

instance Js.ToJSON GeoCoord where
toJSON coord =

Js.object ["lat" .= latitude coord

, "lon" .= longitude coord

]

Here, we’re saying that it’s represented as an object, and we’re using the keys lat and
lon. Try it:

ghci> g1 = GeoCoord 38.121 (-57.88)

ghci> Js.encode g1

"{\"lat\":38.121,\"lon\":-57.88}"

The backslashes only appear because GHCi is trying to display the Javascript strings
inside the Haskell string. If you print the representation, it looks cleaner:

ghci> LBC.putStrLn $ Js.encode g1

{"lat":38.121,"lon":-57.88}

(I had to use LBC.putStrLn because the result of Js.encode is a lazy bytestring rather
than a typical Haskell string. See the qualified import at the top.)

We can specify how to decode a coordinate by implementing FromJSON. This uses
withObject to require an object representation (rather than a number or list),
and then it uses the aeson operator (.:) and the functor/applicative operators
(<$>)/(<*>) to sequence the field values into the right slots of the GeoCoord

constructor.

instance Js.FromJSON GeoCoord where
parseJSON = Js.withObject "GeoCoord" $ \o ->

GeoCoord <$> o .: "lat" <*> o .: "lon"

8 of 12 Prof. League – Fall 2017 – Notes from 12/7

Here it is in action. The ordering of the fields in the JS object are irrelevant, it picks
them up by name. But if one is misspelled, it won’t match.

ghci> Js.decode "{\"lat\":31.7,\"lon\":-15.2}" :: Maybe GeoCoord

Just (GeoCoord {latitude = 31.7, longitude = -15.2})

ghci> Js.decode "{\"lon\":-15.2,\"lat\":31.7}" :: Maybe GeoCoord

Just (GeoCoord {latitude = 31.7, longitude = -15.2})

ghci> Js.decode "{\"lng\":-15.2,\"lat\":31.7}" :: Maybe GeoCoord

Nothing

Now we can write our “round-trip” property: that a coordinate survives being con-
verted to JSON and back:

prop_geo_json_roundtrip :: GeoCoord -> Property

prop_geo_json_roundtrip coord =

Js.decode (Js.encode coord) === Just coord

To run it, we need one more thing. We need to specify how to generate random
coordinates. There are already generators for all the built-in types, so this is just a
matter ofmapping them into our data structure. Here, we take two ‘arbitrary’ Double
values, and then apply the constructor. Again, we’re using the functor/applicative
operators.

instance Arbitrary GeoCoord where
arbitrary = GeoCoord <$> arbitrary <*> arbitrary

There’s a function in QuickCheck called sample that helps you test an instance of
Arbitrary:

ghci> sample (arbitrary :: Gen Char)

'E'

'C'

'\216'

'*'

'o'

'O'

'J'

'h'

'>'

'S'

'K'

ghci> sample (arbitrary :: Gen GeoCoord)

GeoCoord {latitude = 0.0, longitude = 0.0}

GeoCoord {latitude = 0.7865489931241992, longitude = 1.4375435557173153}

CS695 – Functional Programming – LIU 9 of 12

GeoCoord {latitude = -3.47023894151138, longitude = -4.3709050687064535}

GeoCoord {latitude = 1.7478772773937006, longitude = 4.639094423953339}

GeoCoord {latitude = -1.2547019006984546, longitude = -20.315340131826773}

GeoCoord {latitude = -7.7783335238925595, longitude = -9.688305134324583}

GeoCoord {latitude = 0.48298084974375205, longitude = -2.167132054713652}

GeoCoord {latitude = -8.755126145399208, longitude = 12.885220306489924}

GeoCoord {latitude = 18.748583026919654, longitude = 32.41633975464188}

GeoCoord {latitude = 60.26562342374762, longitude = 39.07470650031688}

GeoCoord {latitude = -421.56426194127044, longitude = 10.081915397957822}

Those look like pretty good examples. It even generated the coordinate of
“Null Island”. Now to test our JSON encoding/decoding: ghci> quickCheck
prop_geo_json_roundtrip +++ OK, passed 100 tests.

ghci> quickCheck prop_geo_json_roundtrip

+++ OK, passed 100 tests.

HUnit

This is a library for doing simple unit tests as assertions. The Assertion type is
really just a synonym for IO () (the same type as main), so test cases can do I/O
as needed. There are operators like @?= to assert that two things are equal. The
mnemonic is that the question mark indicates the result you’re unsure about, and
then you’re comparing it to a known, expected result. But you can do it in either
order by switching the question mark with the equals:

actual @?= expected

expected @=? actual

Here’s a silly example that tests the fractional approximation of π:

case_approximate_pi :: Assertion

case_approximate_pi = do
22/7 @?= pi

Of course, they’re not really equal:

ghci> case_approximate_pi

*** Exception: HUnitFailure "expected: 3.141592653589793\n but got: 3.142857142857143"

Unlike QuickCheck, we can use HUnit to ensure that specific cases are tried:

case_geocoord_decode :: Assertion

case_geocoord_decode = do
Js.decode "{\"lon\":0.15,\"lat\":0.17}"

@?= Just (GeoCoord 0.17 0.15)

https://en.wikipedia.org/wiki/Null_Island

10 of 12 Prof. League – Fall 2017 – Notes from 12/7

ghci> case_geocoord_decode

No news is good news.

Tasty

Finally, Tasty is a framework for running lots of test cases and managing the outputs
and results. It can easily integrate tests written using HUnit and QuickCheck (and
other styles).

Here is one way to use it, explicitly labeling and grouping some of the previous tests
we wrote:

runTests =

defaultMain $

testGroup "My tests"

[testCase "decode coord" case_geocoord_decode

, testCase "approx pi" case_approximate_pi

, testProperty "json roundtrip" prop_geo_json_roundtrip

]

And here is the output:

ghci> runTests

My tests

decode coord: OK

approx pi: FAIL

expected: 3.141592653589793

but got: 3.142857142857143

json roundtrip: OK

+++ OK, passed 100 tests.

1 out of 3 tests failed (0.01s)

*** Exception: ExitFailure 1

Manually labeling and organizing all your tests into trees is painful. There are a few
helpful choices for that. One that I discussed in class is tasty-discover. If you
install that tool, then you can create a Haskell file containing only this comment:

{-# OPTIONS_GHC -F -pgmF tasty-discover -optF --tree-display #-}

and the compiler will run tasty-discover to search subdirectories for test functions
that begin with case_ (for HUnit) or prop_ (for QuickCheck).

We’ll look at another technique that doesn’t require a separate source file in assign-
ment 11.

CS695 – Functional Programming – LIU 11 of 12

Resourcemanagement

TODO

bracket, conduits

open file, read each line count # chars on that line print that # close file

countChars = do
h <- openFile "N20171207.lhs" ReadMode

putStrLn "Opened file"

contents <- hGetContents h

let lineLengths = map length $ lines contents

mapM_ (print . (100 `div`)) lineLengths

hClose h

putStrLn "Closed file"

countChars2 = do
withFile "N20171207.lhs" ReadMode $ \h -> do

putStrLn "Opened file"

contents <- hGetContents h

let lineLengths = map length $ lines contents

mapM_ print lineLengths

putStrLn "(Presumably) Closing file"

putStrLn "Now we're done using withFile"

countChars3 =

bracket acquire release calculate

where
acquire = do
h <- openFile "N20171207.lhs" ReadMode

putStrLn "acquire: file was opened"

return h

release h = do
hClose h

putStrLn "release: file was closed"

calculate h = do
contents <- hGetContents h

let lineLengths = map length $ lines contents

mapM_ (print . (100 `div`)) lineLengths

Conduits

countChars4 :: IO ()

countChars4 = runResourceT $ runConduit

$ CB.sourceFile "N20171207.lhs"

12 of 12 Prof. League – Fall 2017 – Notes from 12/7

.| CT.decode CT.utf8

.| CT.lines

.| CL.map T.length

.| CL.mapM_ (liftBase . print)

main :: IO ()

main = return ()

	Administrative
	Module header
	Test frameworks
	QuickCheck
	Arithmetic tests
	Enumeration tests
	Encoding tests

	HUnit
	Tasty

	Resource management
	Conduits

