
CS695 – Functional Programming – LIU 1 of 8

Assignment 1
due at 23:59 on Wed Sep 13 (80 points)

Software setup

For the first part of this assignment, I’d like you to set up the tools for Haskell pro-
gramming, both in the lab and on your own machine (laptop or desktop).

Stack and GHC

“Stack” is a build tool and dependency manager for Haskell projects. “GHC” is the
Glasgow Haskell Compiler, which Stack can download for you. They work on every
popular platform (Windows, Mac, Linux).

Start by following installation instructions here: https://docs.haskellstack.

org/en/stable/install_and_upgrade/

For Mac and Linux, that page recommends a curl command; you would run that
in the Terminal application (in Applications » Utilities on the Finder menu). For
Windows, there’s a traditional installation program.

Once installed, youwill also use Stack from theTerminal application, called theCom-
mand Prompt on Windows. To launch the Windows Command Prompt, open the
start menu and type cmd – you should see the Command Prompt application appear
as the best match. Press enter to open it.

On either platform, verify that Stack is installed correctly by typing stack in the
terminal, and pressing enter. You should see output similar to what follows:

stack - The Haskell Tool Stack

Usage: stack [--help] [--version] [--numeric-version]

[--hpack-numeric-version] [--docker*] [--nix*]

([--verbosity VERBOSITY] | [-v|--verbose] |

[--silent]) [--[no-]time-in-log]

[...lots more options...]

stack's documentation is available at https://docs.haskellstack.org/

Now we need to ask Stack to download the latest version of GHC. Just type this in
your terminal:

stack setup

https://docs.haskellstack.org/en/stable/install_and_upgrade/
https://docs.haskellstack.org/en/stable/install_and_upgrade/

2 of 8 Prof. League – Fall 2017 – Assignment 1

Once it is successfully installed, you should be able to type:

stack ghci

and be loaded into the interactive loop. It should look something like this:

Configuring GHCi with the following packages:

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help

Loaded GHCi configuration from C:\Users\Christopher League\AppData\Local\Temp\ghci5708\ghci-script

Prelude>

To quit GHCi, just type :q then enter.

Editor

You will need to use a text editor, ideally one with at least some support
for Haskell syntax highlighting. On Windows, a good choice is Notepad++
https://notepad-plus-plus.org/, but here are some others that work on
multiple platforms:

• Atom https://atom.io/

• VS Code https://code.visualstudio.com/
• Sublime https://www.sublimetext.com/ – free evaluation, but you’re supposed to
buy a license ($70) if you continue to use it. I’m not sure this is enforced.

If you experiment with anything else and like it, let us know!

Hello, world!

Now we’ll try to compile and run a small “Hello world” program. This should proba-
bly be the first program you write with any new language or compiler. And although
printing Hello is simple enough in Haskell, we won’t use console output (putStrLn)
much more until we’re a few weeks into the course. (Remember, Haskell is a pure
language, and console output is a side effect – so the way I/Oworks is a bit restrictive
and unusual.)

Here’s how to start. Create a folder somewhere convenient (like Desktop or Docu-
ments) – I just called mine cs695. Don’t use spaces in your folder or file names –
it makes them really inconvenient to specify from the command line.

Use your editor to type this program – I always suggest typing rather than copy and
paste, because you learn the syntax better:

main = putStrLn "Hello world"

https://notepad-plus-plus.org/
https://atom.io/
https://code.visualstudio.com/
https://www.sublimetext.com/

CS695 – Functional Programming – LIU 3 of 8

Save that text as a file called Hello.hs in your cs695 folder. Again, don’t use spaces
in file names! Now in your Command Prompt or Terminal, you need to change to
the folder where your code is saved:

cd Desktop/cs695

Once you’re there, the simplest way to compile and run your program is:

stack runghc Hello.hs

You should see your message appear on the console. Congratulations, your first
Haskell program!

Now you may want to make a change and run it again. In class, I showed how to
sequence together two different print statements, using the do keyword:

main = do
putStrLn "Hello grad students"

putStrLn "Bye again"

Try making a similar change and running the program again. Don’t forget to save
the file in your editor after making changes!

Functions

This section servesmainly as rough notes of some of the demonstrations I did in class
on 7 September. It also contains instructions for testing your functions interactively.

Let’s first define some simple mathematical functions, such as:

f(x) = x2 + 3

g(x, y) = x− 2y

There I’m using math notation, and here is a translation into Haskell:

f x = x*x + 3

g x y = x - 2*y

Notice that we do not use parentheses or commas to specify functions and argu-
ments. The function f applied to x is simply written as f x.

4 of 8 Prof. League – Fall 2017 – Assignment 1

Interactive testing

To test these functions, we wouldn’t use stack runghc like we did with the “Hello
world” program. They do not do any console output. Instead, we want to load their
definitions into the interactive interpreter.

Save them into a .hs file (you can just add them to Hello.hs if you want), and then
in your terminal, run:

stack ghci

At the Prelude> prompt, type :load Hello.hs. (Or you can just use :l as an ab-
breviation for :load.) Then you can interactively call the functions and inspect the
results. Here’s a transcript where I did that:

C:\Users\Christopher League\Desktop\cs695>stack ghci

Configuring GHCi with the following packages:

GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help

Loaded GHCi configuration from C:\Users\Christopher League\AppData\Local\Temp\ghci3240\ghci-script

Prelude> :load Hello.hs

[1 of 1] Compiling Main (Hello.hs, interpreted)

Ok, modules loaded: Main.

*Main> f 14

199

*Main> f 21

444

*Main> g 14 21

-28

*Main> g 15 (f 12)

-279

*Main> g (f 15) (f 12)

-66

Whenever youmake changes to your program, you do not have to completely restart
GHCi. Instead, just use the :reload command (abbreviated :r) and it will load the
last thing again, and start using the new definitions. (As long as you saved it in your
editor!)

Conditions and guards

Some mathematical functions can be defined by specifying multiple cases, where a
Boolean expression determines which definition to use. For example, here’s a math-
ematical specification of the function at the heart of the Collatz conjecture.

c(n) =

{
n/2 ifn even
3n+ 1 otherwise

https://en.wikipedia.org/wiki/Collatz_conjecture

CS695 – Functional Programming – LIU 5 of 8

We’ll look at a few ways to specify that in Haskell. First, we can use the if-then-else
keywords:

collatz1 n =

if even n then n `div` 2

else 3*n + 1

The function even is built-in, so we don’t have to do amodule operator like we would
in C++/Java. Also note the division operator: we use div rather than / because we
want to stick with integer division; / would produce floating-point answers.

The next variation uses two separate clauses or cases to specify the function, but
adorns one of them with a guard – the part between the pipe | (which we read as
“where”) and the equals =.

collatz2 n | even n = n `div` 2

collatz2 n = 3*n + 1

Finally, you can stick to one clause to define the function, but use two different
guards. The catch-all one uses the keyword otherwise:

collatz3 n

| even n = n `div` 2

| otherwise = 3*n + 1

Try all of these in your GHCi, and ensure you get the expected answers for each one
on several different parameters.

Recursion

Recursive definitions are a staple of functional programming –muchmore common
than in typical imperative languages. One of the ways to define the factorial function
is recursive:

n! =

{
1 ifn ≤ 0

n× (n− 1)! otherwise

Here is a definition in Haskell, using two clauses and a guard:

fact n | n <= 0 = 1

fact n = n * fact (n-1)

In class, we tried this on numbers large and small. Haskell uses arbitrary-sized inte-
gers by default, so it can generate some impressive quantities pretty quickly:

https://en.wikipedia.org/wiki/Factorial

6 of 8 Prof. League – Fall 2017 – Assignment 1

*Main> fact 5

120

*Main> fact 10

3628800

*Main> fact 500

1220136825991110068701238785423046926253574342803192842192413588385

8453731538819976054964475022032818630136164771482035841633787220781

7720048078520515932928547790757193933060377296085908627042917454788

2424912726344305670173270769461062802310452644218878789465754777149

8634943677810376442740338273653974713864778784954384895955375379904

2324106127132698432774571554630997720278101456108118837370953101635

6324432987029563896628911658974769572087926928871281780070265174507

7684107196243903943225364226052349458501299185715012487069615681416

2535905669342381300885624924689156412677565448188650659384795177536

0894005745238940335798476363944905313062323749066445048824665075946

7358620746379251842004593696929810222639719525971909452178233317569

3458150855233282076282002340262690789834245171200620771464097945611

6127629145951237229913340169552363850942885592018727433795173014586

3575708283557801587354327688886801203998823847021514676054454076635

3598417443048012893831389688163948746965881750450692636533817505547

812864000

000

Exercises

So far, this document has contained setup instructions and notes on using Haskell.
Starting in this section, you will do some exercises and turn in your answers. Save
your Haskell code for this entire section as a01.hs and upload that file to this drop-
box.

1. Rewrite the factorial function I defined above to use if-then-else instead of the
pattern guard. Name it factIf. Test that it produces the expected results for some
inputs like 5, 6, and 10.

2. Define this mathematical function using Haskell, name it quadratic, and test it (cor-
rect answers for some inputs are given below).

q(a, b, c) =
−b+

√
b2 − 4ac

2a

Note about negative numbers inHaskell: the syntax of the negative sign can be a little
confusing; if you’re getting errors related to it, you should try surrounding the value
with parentheses, such as (-9) rather than just -9. Also, the square-root function in
Haskell is named sqrt, and it’s built-in (nothing to import).

https://www.dropbox.com/request/4ZFnrMaKv5g7ql9VgzfQ
https://www.dropbox.com/request/4ZFnrMaKv5g7ql9VgzfQ

CS695 – Functional Programming – LIU 7 of 8

*Main> quadratic 2 9 3

-0.36254139118231254

*Main> quadratic 1 (-1) (-1)

1.618033988749895

3. Define a function to calculate the volume of a sphere of a given radius. Name it
sphere. Below are correct answers for some inputs. To represent π, you should use
the built-in constant pi (lowercase).

*Main> sphere 1

4.1887902047863905

*Main> sphere 3.75

220.8932334555323

4. Here is a recursive function in Haskell:

slow x y

| x < y = x

| otherwise = slow (x-y) y

On paper, trace out the steps involved in evaluating slow 101 21, the same way we
would for an algebraic expression. That is, determine the parameters x and y, check
which case applies, then rewrite it. Repeat until the recursion completes and you get
down to a single number.

Then you can transcribe your paperwork into Haskell comment near the function
in a01.hs. Comments in Haskell are surrounded by {- and -} (similar to /* and
*/ in C++/Java) or single-line comments using -- (similar to // in C++/Java). For
example, you can write:

{- My evaluation:

slow 101 21 ==

_______ ==

_______ ==

_______ (fill in the blanks)

-}

5. Read the introduction to the Collatz sequence onWikipedia and/or watch this Num-
berphile video about Collatz.

Then write a recursive Haskell function collatzCount n that calculates the number
of steps it takes to get from n down to 1. For example, the Wikipedia article states
“the sequence forn = 27, listed and graphed below, takes 111 steps” so your function
output in that case should be:

*Main> collatzCount 27

111

https://en.wikipedia.org/wiki/Collatz_conjecture
https://www.youtube.com/watch?v=5mFpVDpKX70
https://www.youtube.com/watch?v=5mFpVDpKX70

8 of 8 Prof. League – Fall 2017 – Assignment 1

Your function can begin like this:

collatzCount n

| n <= 1 = 0 -- We're already at one, so zero steps

| otherwise = __________ -- fill in the blank

and you should feel free to make use of the collatz1 (or similar) definitions given
previously.

Here are a few other correct examples:

*Main> collatzCount 99

25

*Main> collatzCount 1024

10

*Main> collatzCount 118

33

	Software setup
	Stack and GHC
	Editor
	Hello, world!

	Functions
	Interactive testing
	Conditions and guards
	Recursion

	Exercises

