
CS695 – Functional Programming – LIU 1 of 7

Assignment 2
due at 23:59 on Wed Sep 20 (80 points)

For this assignment, you will write a few small functions for generating or processing
lists (including strings, which are lists of characters).

Save all your functions to a file called a02.hs and submit it to this dropbox. To ensure
compatibility with my test procedures, you should use exactly the function names
indicated. Also, for some exercises I will specify whether it should be written recur-
sively, or whether it should use existing functions like take and map.

At the bottom of this document is a main program that I will use to test your code.
You may paste it into your program and test that way too, by invoking main in GHCi,
or using stack runghc on the filename.

1. We learned about built-in functions take and drop. Use them to write a function
slice i k that extracts elements between positions i and k (including i, but exclud-
ing k). Here are some examples:

*Main> slice 3 6 [0,0,0,1,2,3,0,0,0]

[1,2,3]

*Main> slice 2 2 [1,2,3,4]

[]

*Main> slice 2 3 [1,2,3,4]

[3]

*Main> slice 2 10 [1,2,3,4]

[3,4]

*Main> slice 10 15 [1,2,3,4]

[]

2. Write a function that ‘rotates’ a list to the left by n places. My solutions uses take,
drop, and the list concatenation operator, ++. The following transcript demonstrates
++ and them gives some examples of rotate:

*Main> rotate 0 []

[]

*Main> rotate 2 [1,2,3,4,5]

[3,4,5,1,2]

*Main> rotate 5 "abracadabra"

"adabraabrac"

The behavior of the function is unspecified if the n is negative or larger than the size
of the list.

https://www.dropbox.com/request/a37gG8GiHI9fatlxjsJQ


2 of 7 Prof. League – Fall 2017 – Assignment 2

3. Write a recursive function everyOther that takes a list and returns a list that retains
every alternate element. The best way to understand is by example:

*Main> everyOther [1..10]

[1,3,5,7,9]

*Main> everyOther ["Alice", "Bob", "Carl"]

["Alice","Carl"]

*Main> everyOther "university"

"uiest"

*Main> everyOther "trail"

"tal"

*Main> everyOther []

[]

*Main> everyOther [pi]

[3.141592653589793]

Hint: This function actually has two base cases: the empty list, and the list containing
just a single element.

4. For this problem, you’ll write a list-processing function that consumes a list, but just
produces an integer. It should count how many times a particular element appears
in a list. Here are some examples:

*Main> countOccurences 5 [1..10]

1

*Main> countOccurences 5 [1,5,2,5,3,5,7,5]

4

*Main> countOccurences 'a' "abracadabra"

5

*Main> countOccurences 'o' "xylophone"

2

You can either write it recursively by pattern-matching on the list, or you can use a
combination of existing functions.

5. For this problem, write a function insertElem x k l that inserts the element x at
position k (zero-based indexing) in the list l. Here are some examples:

*Main> insertElem 10 4 [2,4,6,8,12,14]

[2,4,6,8,10,12,14]

*Main> insertElem 'a' 3 "carmel"

"caramel"

*Main> insertElem 'H' 0 "askell"

"Haskell"

*Main> insertElem '!' 8 "FP rocks"

"FP rocks!"



CS695 – Functional Programming – LIU 3 of 7

*Main> insertElem '!' 20 "FP rocks"

"FP rocks"

You should approach this recursively. Again, there are two base cases. One is that
the index k is zero, so you insert the element x right here at the front of the list. The
other base case is that the list is empty, so you don’t insert it at all. (The given index
was too big.)

6. In this problem and the next one, we’re going to create functions that will help us
generate prime numbers. (An integer greater than one is prime if its only divisors
are one and itself.)

Let’s begin by creating a function divides p q which returns True if p is divisible
by q with no remainder, or false otherwise. You can implement this using the mod
operator which (like div) is often specified as an infix operator using back quotes.
Here are some examples:

*Main> 7 `mod` 3

1

*Main> 18 `mod` 3

0

*Main> divides 7 3

False

*Main> divides 18 3

True

*Main> divides 29 2

False

*Main> divides 29 3

False

*Main> divides 27 3

True

7. Now you are ready to define isPrime n, which – as long as n is greater than 1 – will
iterate through the range [2..(n-1)] and check that none of those values divide
n. You should use divides from the previous question, and one or more of these
built-in functions:

• not takes a Boolean and returns its opposite
• any takes a Boolean function and a list, and returns True if any of the list elements

cause the function to produce True.
• all takes a Boolean function and a list, and returns True if all of the list elements

cause the function to produce True.

You should also use a guard and otherwise to rule numbers out 1 (and any non-
positive numbers), which by definition are not prime.

Here are some examples using isPrime:



4 of 7 Prof. League – Fall 2017 – Assignment 2

*Main> isPrime 27

False

*Main> isPrime 29

True

*Main> isPrime 1

False

*Main> isPrime 2

True

*Main> isPrime 101

True

*Main> isPrime 105

False

Here are all the primes less than 200:

*Main> filter isPrime [1..200]

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,

79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,

157,163,167,173,179,181,191,193,197,199]

And here are the first 200 primes! (We’re cleverly using an infinite list here, but
limiting its evaluation by applying take.)

*Main> take 200 (filter isPrime [1..])

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,

73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,

157,163,167,173,179,181,191,193,197,199,211,223,227,229,

233,239,241,251,257,263,269,271,277,281,283,293,307,311,

313,317,331,337,347,349,353,359,367,373,379,383,389,397,

401,409,419,421,431,433,439,443,449,457,461,463,467,479,

487,491,499,503,509,521,523,541,547,557,563,569,571,577,

587,593,599,601,607,613,617,619,631,641,643,647,653,659,

661,673,677,683,691,701,709,719,727,733,739,743,751,757,

761,769,773,787,797,809,811,821,823,827,829,839,853,857,

859,863,877,881,883,887,907,911,919,929,937,941,947,953,

967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,

1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,

1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,

1213,1217,1223]

8. Finally, let’s define a Boolean function twinPrime. A number n is the first member
of a twin prime if n is prime and n+2 is also prime. For example, 11 and 13 are twin
primes. But your function should only produce True for 11, not for 13.

*Main> twinPrime 11



CS695 – Functional Programming – LIU 5 of 7

True

*Main> twinPrime 13

False

*Main> filter twinPrime [1..100]

[3,5,11,17,29,41,59,71]

When is the next time that the year will be a twin prime?

*Main> take 1 $ filter twinPrime [2017..]

[2027]

Test code

Note: This uses an external module called Control.Monad.State. If that gives you
any problems running this code, you can execute this in your terminal:

stack install mtl

Once that completes, the test program should work.

-- Imports must appear before other functions

import Control.Monad.State

-- Test driver

main = flip execStateT (0,0) $ do
-- Ex 1

verify "slice1" [1,2,3] $ slice 3 6 [0,0,0,1,2,3,0,0,0]

verify "slice2" [] $ slice 2 2 [1..4]

verify "slice3" [3] $ slice 2 3 [1..4]

verify "slice4" [3,4] $ slice 2 10 [1..4]

verify "slice5" [] $ slice 10 15 [1..4]

-- Ex 2

verify "rotate1" [] $ rotate 0 ([] :: [Int])

verify "rotate2" [3,4,5,1,2] $ rotate 2 [1..5]

verify "rotate3" "adabraabrac" $ rotate 5 "abracadabra"

-- Ex 3

verify "everyOther1" [1,3,5,7,9] $ everyOther [1..10]

verify "everyOther2" ["Al","Ca"] $ everyOther ["Al", "Bo", "Ca"]

verify "everyOther3" "uiest" $ everyOther "university"

verify "everyOther4" "tal" $ everyOther "trail"

verify "everyOther5" [] $ everyOther ([] :: [Int])

verify "everyOther6" "a" $ everyOther "a"

-- Ex 4

verify "countOccurs1" 1 $ countOccurences 5 [1..10]

verify "countOccurs2" 4 $ countOccurences 5 [1,5,2,5,3,5,7,5]



6 of 7 Prof. League – Fall 2017 – Assignment 2

verify "countOccurs3" 5 $ countOccurences 'a' "abracadabra"

verify "countOccurs4" 2 $ countOccurences 'o' "xylophone"

-- Ex 5

verify "insert1" [2,4,6,8,10,12,14] $ insertElem 10 4 [2,4,6,8,12,14]

verify "insert2" "caramel" $ insertElem 'a' 3 "carmel"

verify "insert3" "Haskell" $ insertElem 'H' 0 "askell"

verify "insert4" "FP rocks!" $ insertElem '!' 8 "FP rocks"

verify "insert5" "FP rocks" $ insertElem '!' 20 "FP rocks"

-- Ex 6

verify "divides1" False $ divides 7 3

verify "divides2" True $ divides 18 3

verify "divides3" False $ divides 29 2

verify "divides4" False $ divides 29 3

verify "divides5" True $ divides 27 3

-- Ex 7

verify "isPrime1" False $ isPrime 27

verify "isPrime2" True $ isPrime 29

verify "isPrime3" False $ isPrime 1

verify "isPrime4" True $ isPrime 2

verify "isPrime5" True $ isPrime 101

verify "isPrime6" False $ isPrime 105

-- Ex 8

verify "twinPrime1" True $ twinPrime 11

verify "twinPrime2" False $ twinPrime 13

verify "twinPrime3" [3,5,11,17,29,41,59,71] $ filter twinPrime [1..100]

-- Done

get >>= say . show

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

++ " got " ++ show actual



CS695 – Functional Programming – LIU 7 of 7

-- End of test driver


	Test code

