
CS695 – Functional Programming – LIU 1 of 12

Assignment 3
due at 23:59 on Wed Sep 27 (80 points)

For this assignment, you will write some functions for processing tree data types
in Haskell. Save all your functions into one file called a03.hs and submit it to this
dropbox.

At the bottom of this document is a main program that I will use to test your code.
You may paste it into your program and test that way too, by invoking main in
GHCi, or using stack runghc on the filename. The main program contains one line
(createGraphs) that won’t work; just remove it. Like in the previous assignment, if
you get errors on the imports in the test driver, you need to stack install mtl.

Generic tree operations

In class we developed this tree type. The type variable lv stands for the type of values
stored at the leaves. The type variable bv stands for the type of values stored at the
branches.

data Tree lv bv

= Leaf {leafValue :: lv}

| Branch {branchValue :: bv, left, right :: Tree lv bv}

deriving (Show, Eq)

Here is an example tree defined using the datatype. Compare it to the figure labeled
with tree1.

tree1 =

Branch 1 -- Root

(Branch 3 (Leaf 'A') (Leaf 'B')) -- Left of root

(Branch 5 (Leaf 'C') (Leaf 'D')) -- Right of root

In tree1, the branch type is Intwhile the leaf type is Char. So we can declare its type
signature like this:

tree1 :: Tree Char Int

Here is the definition of a more sophisticated tree structure, along with its diagram.
The types are switched around, so we have integers at leaves and characters on the
branches.

https://www.dropbox.com/request/hbbqa2hE3NY7qNOCH0sE
https://www.dropbox.com/request/hbbqa2hE3NY7qNOCH0sE

2 of 12 Prof. League – Fall 2017 – Assignment 3

Figure 1: The tree defined by tree1

tree2 :: Tree Int Char

tree2 =

Branch 'A'

(Leaf 3)

(Branch 'B'

(Branch 'C'

(Leaf 4)

(Branch 'D'

(Leaf 5)

(Leaf 7)))

(Leaf 9))

Now let’s define some generic functions on trees. They should work for trees con-
taining any types of values.

(1) depth

The function depth should recursively calculate the depth (sometimes called height)
of a tree. Leaves have depth zero. Each branch adds one level of depth to the max
depth of its children. So for example:

• depth (Leaf 8)⇒ 0

• depth tree1⇒ 2

• depth tree2⇒ 4

CS695 – Functional Programming – LIU 3 of 12

Figure 2: The tree defined by tree2

4 of 12 Prof. League – Fall 2017 – Assignment 3

Use this signature:

depth :: Tree lv bv -> Int

(2) listLeaves

The function

listLeaves :: Tree lv bv -> [lv]

should produce a list of all the leaves encountered by traversing the tree from left to
right. Youmay want to use the list concatenation operator, which is ++. For example:

• [3,4,5] ++ [6,7]⇒ [3,4,5,6,7]

• listLeaves (Leaf "Carl")⇒ ["Carl"]

• listLeaves tree1⇒ "ABCD"

• listLeaves tree2⇒ [3,4,5,7,9]

(3) mirrorTree

The function

mirrorTree :: Tree lv bv -> Tree lv bv

should take a tree and produce a new tree that’s the same as the old one except all
branches have their left and right children switch places. For example:

ghci> mirrorTree (Leaf 9) -- Nothing changes on a leaf

Leaf {leafValue = 9}

ghci> mirrorTree (Branch 9 (Leaf 8) (Leaf 7)) -- The 8,7 change places

Branch {branchValue = 9,

left = Leaf {leafValue = 7},

right = Leaf {leafValue = 8}}

ghci> mirrorTree tree1

Branch {branchValue = 1,

left = Branch {branchValue = 5,

left = Leaf {leafValue = 'D'},

right = Leaf {leafValue = 'C'}},

right = Branch {branchValue = 3,

left = Leaf {leafValue = 'B'},

right = Leaf {leafValue = 'A'}}}

The next two figures illustrate the mirrors of tree1 and tree2.

CS695 – Functional Programming – LIU 5 of 12

Figure 3: Result of mirrorTree tree1

(4) mapLeaves

The function

mapLeaves :: (lv1 -> lv2) -> Tree lv1 bv -> Tree lv2 bv

should take a function and a tree, and produce a new treewhere the function has been
applied to each leaf value. (This is similar to the map function on lists, but retains the
structure of the tree.) Examples:

ghci> mapLeaves (+5) (Leaf 2)

Leaf {leafValue = 7}

ghci> mapLeaves (++ ", PhD") (Branch 5 (Leaf "Alice") (Leaf "Bob"))

Branch {branchValue = 5,

left = Leaf {leafValue = "Alice, PhD"},

right = Leaf {leafValue = "Bob, PhD"}}

(5) mapBranches

mapBranches :: (bv1 -> bv2) -> Tree lv bv1 -> Tree lv bv2

This function should take a function and a tree, and produce a new tree where the
function has been applied to each branch value, preserving the structure of the tree.
Examples:

6 of 12 Prof. League – Fall 2017 – Assignment 3

Figure 4: Result of mirrorTree tree2

CS695 – Functional Programming – LIU 7 of 12

Figure 5: Result of mapLeaves (ˆ2) tree2

8 of 12 Prof. League – Fall 2017 – Assignment 3

ghci> mapBranches (*2) (Leaf 9)

Leaf {leafValue = 9}

ghci> mapBranches (*2) (Branch 9 (Leaf 15) (Leaf 28))

Branch {branchValue = 18,

left = Leaf {leafValue = 15},

right = Leaf {leafValue = 28}}

Arithmetic expression trees

Now we will explore a particular use case for trees: to represent arithmetic expres-
sions. That is, expressions containing numbers and arithmetic operations like add,
subtract, multiply, etc.

First let’s enumerate a type for arithmetic operations:

data ArithOp = Add | Subtract | Multiply | Divide | Power

deriving (Show, Eq)

Using the ArithOp type for the values at branches, and Float for the types of values
at leaves, we can define an expression tree:

expr1 :: Tree Float ArithOp

expr1 =

Branch Multiply

(Branch Add (Leaf 1) (Leaf 2))

(Leaf 3)

(6) calculate

calculate :: ArithOp -> Float -> Float -> Float

This function should take an ArithOp and two numbers, and applies the appropri-
ate operator. Basically that means we are defining Add by using the + symbol, and
Multiply by using the * symbol, etc. Here are some examples:

ghci> calculate Divide pi 2.5

1.2566371

ghci> calculate Add pi 2.5

5.641593

ghci> calculate Multiply pi 2.5

7.853982

ghci> calculate Subtract pi 2.5

0.64159274

ghci> calculate Power pi 2.5

17.49342

CS695 – Functional Programming – LIU 9 of 12

Figure 6: Result of mapBranches (succ . succ) tree2 where the successor func-
tion (succ) applied to characters produces the next character

10 of 12 Prof. League – Fall 2017 – Assignment 3

Figure 7: The expression tree defined by expr1

(7) interpret

interpret :: Tree Float ArithOp -> Float

This function should take a tree representing and arithmetic expression, and reduce
it to a single floating-point number by applying all the operators to their operands as
specified by the tree structure. For example, with the tree represented by expr1 we
would produce steps like these:

• (Multiply (Add 1.0 2.0) 3.0)⇒
• (Multiply 3.0 3.0)⇒
• 9.0

ghci> interpret expr1

9.0

ghci> interpret (Leaf pi)

3.1415927

ghci> interpret (Branch Divide (Leaf pi) (Leaf 2))

1.5707964

(8) expr2

Define a variable expr2which represents the arithmetic expression in the next figure.

Some examples of its expected performance are in the test code.

CS695 – Functional Programming – LIU 11 of 12

Figure 8: The expression tree defined by expr2

Test code

import Control.Monad.RWS

import Control.Monad.State

import System.IO

main = do
createGraphs -- You can remove this line

flip execStateT (0,0) $ do
-- Ex 1 depth

verify "1.01 depth" 2 $ depth tree1

verify "1.02 depth" 4 $ depth tree2

verify "1.03 depth" 2 $ depth expr1

verify "1.04 depth" 0 $ depth (Leaf "a")

-- Ex 2 listLeaves

verify "2.01 listLeaves" "ABCD" $ listLeaves tree1

verify "2.02 listLeaves" [3,4,5,7,9] $ listLeaves tree2

verify "2.03 listLeaves" [1,2,3] $ listLeaves expr1

verify "2.04 listLeaves" [99] $ listLeaves $ Leaf 99

-- Ex 3 mirrorTree

verify "3.01 mirrorTree" "DCBA" $ listLeaves $ mirrorTree tree1

verify "3.02 mirrorTree" [9,7,5,4,3] $ listLeaves $ mirrorTree tree2

verify "3.03 mirrorTree" [3,2,1] $ listLeaves $ mirrorTree expr1

verify "3.04 mirrorTree" [99] $ listLeaves $ mirrorTree $ Leaf 99

-- Ex 4 mapLeaves

12 of 12 Prof. League – Fall 2017 – Assignment 3

verify "4.01 mapLeaves" "BCDE" $ listLeaves $ mapLeaves succ tree1

verify "4.02 mapLeaves" "@ABC" $ listLeaves $ mapLeaves pred tree1

verify "4.03 mapLeaves" [9,16,25,49,81] $ listLeaves $ mapLeaves (^2) tree2

verifyF "4.04 mapLeaves" 22.245312 $ sum $ listLeaves $ mapLeaves (**2.5) expr1

-- Ex 5 mapBranches

verify "5.01 mapBranches" (Leaf 6) $ mapBranches (+1) (Leaf 6)

verify "5.02 mapBranches" (Branch 9 (Leaf 6) (Leaf 7)) $

mapBranches (+1) (Branch 8 (Leaf 6) (Leaf 7))

-- Ex 6

verifyF "6.01 calculate" (pi/2) $ calculate Divide pi 2

verifyF "6.02 calculate" (pi+2) $ calculate Add pi 2

verifyF "6.03 calculate" (pi*2) $ calculate Multiply pi 2

verifyF "6.04 calculate" (pi-2) $ calculate Subtract pi 2

verifyF "6.05 calculate" (pi^2) $ calculate Power pi 2

-- Ex 7

verifyF "7.01 interpret" 9.0 $ interpret expr1

verifyF "7.02 interpret" 27.0 $ interpret $ mapLeaves (+1.5) expr1

verifyF "7.03 interpret" 6.0 $ interpret $ mapBranches (const Multiply) expr1

-- Ex 8

verify "8.01 expr2" 3 $ depth expr2

verify "8.02 expr2" [pi,7,19.1,18.2,6,0.3] $ listLeaves expr2

verifyF "8.03 expr2" 21.477394 $ interpret expr2

verifyF "8.04 expr2" 21.480368 $ interpret $ mirrorTree expr2

verifyF "8.05 expr2" 379.6297 $ interpret $ mapLeaves (+1) expr2

verifyF "8.06 expr2" 53.741592 $ interpret $ mapBranches (const Add) expr2

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

++ " got " ++ show actual

-- End of test driver

	Generic tree operations
	(1) depth
	(2) listLeaves
	(3) mirrorTree
	(4) mapLeaves
	(5) mapBranches

	Arithmetic expression trees
	(6) calculate
	(7) interpret
	(8) expr2

	Test code

