
CS695 – Functional Programming – LIU 1 of 8

Assignment 4
due at 23:59 on Wed Oct 4 (80 points)

For this assignment, you will create a set of total functions to implement a bounded
stack, and then write some additional helper functions for the Maybe and Either

types. Here are some additional considerations:

• You should not be exchanging entire Haskell files with other students. There are too
many people submitting exactly the same files, even down to spacing. If you consult
with other students, make sure you type your code separately. That’s the least you
can do to at least ensure the code has passed through your brain! Even better would
be to discard any notes after consulting with other students, and then reproduce the
code on your own. Then you ensure you know how it works.

• Use a comment at the top of the program to include your name, date, and assignment
number. Also, any commentary about your work can be helpful in comments: for
example, what parts were the trickiest to understand?

• Save all your functions into one file called a04.hs and submit it to this dropbox.

Bounded stack

For this section, we’re going to produce a variation on the bounded stack data type
that we studied in class. The main difference is that now we want our functions to
be total – that is, we can’t use error when something goes wrong, such as trying to
push into a full stack or pop from an empty one.

Instead of error, we will alter the types of our functions to use the Haskell Maybe
type. For example, attempting to pop from an empty stack will produce Nothing

rather than an exception. And when we successfully pop from a non-empty stack,
the result is wrapped in the Just constructor, to signify that it worked.

The data definition itself can be the same, although you should derive both Show and
Eq type classes. We need Eq in the test code so that we can compare stacks to see if
we’re getting the desired results.

data BoundedStack a

= BoundedStack { capacity :: Int, elements :: [a] }

deriving (Show, Eq)

And here are signatures for the six functions you should implement:

new :: Int -> BoundedStack a

push :: a -> BoundedStack a -> Maybe (BoundedStack a)

pop :: BoundedStack a -> Maybe (BoundedStack a)

https://www.dropbox.com/request/LNrM2L7mSDOANrQG4VYg

2 of 8 Prof. League – Fall 2017 – Assignment 4

top :: BoundedStack a -> Maybe a

isFull :: BoundedStack a -> Bool

isEmpty :: BoundedStack a -> Bool

Notice that push, pop, and top all return Maybe values now (unlike in class). A stack
isFullwhen it has reached its capacity (and further push operations would produce
Nothing). A stack isEmpty when it has no elements (and the pop/top operations
would produce Nothing).

Below is a transcript to show how we can test all these functions interactively:

ghci> Just s = (push 5 >=> push 6 >=> push 7) (new 4)

ghci> s

BoundedStack {capacity = 1, elements = [7,6,5]}

Because push now returns a Maybe, it’s not quite as simple to sequence together mul-
tiple pushes like we did in class. So there are two concessions here to the Maybe type.
First, we bind the variable using Just s = ... rather than s = This is just
a form of pattern-matching used in a variable definition. If the right side of the =

produces Nothing, it will be a non-exhaustive match failure.

The second concession to Maybe is the >=> operator. When you use >=> to compose
functions that produce Maybe values, each step in the sequence will match the Just
constructor in order to send the value within it to the next step. If any step produces
Nothing, then the whole sequence produces Nothing. Here’s an example where that
happens, because we apply the sequence to a new stack with insufficient capacity:

ghci> (push 5 >=> push 6 >=> push 7) (new 2)

Nothing

Pushing the 5 and the 6 succeeds, but when we try to push 7 it fails. We get the same
result even if it fails in the middle:

ghci> (push 5 >=> push 6 >=> push 7) (new 1)

Nothing

Recall that s is still a stack containing [7,6,5]. Here are some further operations on
it:

ghci> top s

Just 7

ghci> pop s

Just (BoundedStack {capacity = 2, elements = [6,5]})

ghci> Just t = push 8 s

ghci> t

BoundedStack {capacity = 0, elements = [8,7,6,5]}

CS695 – Functional Programming – LIU 3 of 8

So t is full, but s is not. Neither one is empty.

ghci> isFull s

False

ghci> isFull t

True

ghci> isEmpty s

False

ghci> isEmpty t

False

But a brand new stack would be empty, regardless of its capacity.

ghci> isEmpty (new 4)

True

Here we try to push into a full stack, and pop from an empty stack:

ghci> push 9 t

Nothing

ghci> pop (new 4)

Nothing

Notice we got Nothing instead of exceptions. Here are sequences of pop operations
using >=>:

ghci> (pop >=> pop) t

Just (BoundedStack {capacity = 2, elements = [6,5]})

ghci> (pop >=> pop >=> pop) t

Just (BoundedStack {capacity = 3, elements = [5]})

ghci> (pop >=> pop >=> pop >=> pop) t

Just (BoundedStack {capacity = 4, elements = []})

ghci> (pop >=> pop >=> pop >=> pop >=> top) t

Nothing

ghci> (pop >=> pop >=> pop >=> pop >=> pop) t

Nothing

ghci> top t

Just 8

The Maybe type

In this section, we’ll write a couple helper functions for the Maybe type. Recall that
Maybe is built-in, but equivalent to this:

4 of 8 Prof. League – Fall 2017 – Assignment 4

data Maybe a

= Just a

| Nothing

So the Nothing can be used (like NULL in other languages) to indicate the absence of
a value.

mapMaybe

The first one is mapMaybe, which is like map over a list, but the function returns a
Maybe. So if the function produces Nothing, we just exclude that element from the
list. The signature is:

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

To show some examples, let’s first define a function that produces a Maybe. This one
halves an integer if it’s even, but produces Nothing if it’s odd:

half :: Int -> Maybe Int

half x | even x = Just (x `div` 2)

| otherwise = Nothing

So now the example usage:

ghci> half 10

Just 5

ghci> half 11

Nothing

ghci> mapMaybe half [10..15]

[5,6,7]

andThen

Sometimes when we have a Maybe value, we want to sequence it with a function that
takes the embedded value (if Just) and then also returns Maybe.

For example, push 7 (new 2) produces a Maybe (BoundedStack Int). If we want
to apply top to that result, it also produces Maybe Int. So we need to sequence them
together in a way that handles the Maybe. (This is related to how the >=> operator
works.)

Define a function andThen that can be used for this purpose:

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

Here’s the example with the BoundedStack

CS695 – Functional Programming – LIU 5 of 8

ghci> andThen (push 7 (new 2)) top -- Both push and top succeed

Just 7

ghci> andThen (push 7 (new 0)) top -- push fails, so top isn't executed

Nothing

ghci> andThen (Just (new 0)) top -- top fails

Nothing

An function like this would often be used “infix” – between its operands. We can sur-
round any function name with the backticks to turn it into an infix operator. We’ve
seen this before with div and mod. Here are the same examples as the previous tran-
script, but using infix notation:

ghci> push 7 (new 2) `andThen` top

Just 7

ghci> push 7 (new 0) `andThen` top

Nothing

ghci> Just (new 0) `andThen` top

Nothing

and here we use it in a chain:

ghci> push 7 (new 4) `andThen` push 8 `andThen` push 9 `andThen` pop `andThen` top

Just 8

Finally, here are some simpler examples using half:

ghci> half 20 `andThen` half -- both succeed

Just 5

ghci> half 10 `andThen` half -- half 10 succeeds, then half 5 fails

Nothing

ghci> half 5 `andThen` half -- half 5 fails right away

Nothing

The Either type

In this last section, we’ll define a few simple functions on the Either type. Recall
that Either is built-in to the standard Haskell prelude, but equivalent to this:

data Either a b

= Left a

| Right b

6 of 8 Prof. League – Fall 2017 – Assignment 4

exchange

This simple function should just turn a Right value into a Left, and vice-versa.

exchange :: Either a b -> Either b a

ghci> exchange (Left 4)

Right 4

ghci> exchange (Right 5)

Left 5

ghci> exchange (Left "Alice")

Right "Alice"

ghci> exchange (Right "Bob")

Left "Bob"

mapLeft

Recall that a functor is a type that can hold values of some type, and fmap is a generic
version of map that applies a function to the values inside the functor:

ghci> :t map -- map is specific to lists

map :: (a -> b) -> [a] -> [b]

ghci> :t fmap -- fmap works for any functor

fmap :: Functor f => (a -> b) -> f a -> f b

ghci> map (+4) [1..5]

[5,6,7,8,9]

ghci> fmap (+4) [1..5] -- on lists, fmap same as map

[5,6,7,8,9]

ghci> fmap (+4) (Just 5) -- Maybe is a functor

Just 9

ghci> fmap (+4) Nothing

Nothing

ghci> fmap (+4) (Right 5) -- Either is a functor,

Right 9

ghci> fmap (+4) (Left 5) -- but only on a Right value

Left 5

We might like to have something similar to fmap but that works on Left values in-
stead of Right values. Its type would be:

mapLeft :: (a -> b) -> Either a c -> Either b c

Implement this function. It should behave like so:

ghci> mapLeft (+4) (Right 5)

Right 5

ghci> mapLeft (+4) (Left 5)

Left 9

CS695 – Functional Programming – LIU 7 of 8

coalesce

If both alternatives in the Either type are the same (such as Either Int Int or
Either Char Char) then we can eliminate the distinction between left and right.
Define this function:

coalesce :: Either a a -> a

ghci> coalesce (Left 5)

5

ghci> coalesce (Right 5)

5

ghci> coalesce (Left 'C')

'C'

ghci> coalesce (Right 'D')

'D'

Test code

import Control.Monad.RWS

import Control.Monad.State

import System.IO

main = do
flip execStateT (0,0) $ do

-- Bounded stack

let s4 = new 4 :: BoundedStack Int

s0 = new 0 :: BoundedStack Int

verify "1.01 capacity new" 4 $ capacity s4

verify "1.02 elements new" [] $ elements s4

assert "1.03 isEmpty new" $ isEmpty s4

assert "1.04 isFull new" $ not $ isFull s4

assert "1.05 isFull new" $ isFull s0

verify "1.06 capacity push" (Just 3) $ capacity <$> push 6 s4

verify "1.07 elements push" (Just [9]) $ elements <$> push 9 s4

verify "1.08 elements push^2" (Just [9,7]) $ elements <$> (push 7 >=> push 9) s4

verify "1.09 push full" Nothing $ push 9 s0

verify "1.10 top push" (Just 7) $ (push 7 >=> top) s4

verify "1.11 top empty" Nothing $ top s0

verify "1.12 isEmpty pop push" (Just True) $ isEmpty <$> (push 7 >=> pop) s4

verify "1.13 isEmpty push" (Just False) $ isEmpty <$> push 7 s4

-- The Maybe type

let half x | even x = Just (x `div` 2)

| otherwise = Nothing

upper x | x `elem` ['a'..'z'] = Just (succ x)

| otherwise = Nothing

8 of 8 Prof. League – Fall 2017 – Assignment 4

noChar = Nothing :: Maybe Char

verify "2.01 mapMaybe []" [] $ mapMaybe half []

verify "2.02 mapMaybe half" [3..6] $ mapMaybe half [6..12]

verify "2.03 mapMaybe upper" "fmmppsme" $ mapMaybe upper "Hello World"

verify "2.04 mapMaybe Nothing" [] $ mapMaybe (const noChar) "goodbye"

verify "2.05 andThen Nothing" Nothing $ Nothing `andThen` half

verify "2.06 andThen Just odd" Nothing $ Just 5 `andThen` half

verify "2.07 andThen Just even" (Just 4) $ Just 8 `andThen` half

-- The Either type

let l5 = Left 5 :: Either Int Char

r5 = Right 5 :: Either Char Int

verify "3.01 exchange left" r5 $ exchange l5

verify "3.02 exchange right" l5 $ exchange r5

verify "3.03 mapLeft left" (Left 10) $ mapLeft (*2) l5

verify "3.04 mapLeft right" (Right 5) $ mapLeft succ r5

verify "3.05 coalesce left" 10 $ coalesce (Left 10)

verify "3.06 coalesce right" 10 $ coalesce (Right 10)

verify "3.07 mapLeft same as exchange/fmap" (mapLeft (*2) l5) $

(exchange $ fmap (*2) $ exchange l5)

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

assert s = verify s True

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

	Bounded stack
	The Maybe type
	mapMaybe
	andThen

	The Either type
	exchange
	mapLeft
	coalesce

	Test code

