
CS695 – Functional Programming – LIU 1 of 3

Assignment 4 solutions

Test driver

import Control.Monad.RWS

import Control.Monad.State

import System.IO

main = do
flip execStateT (0,0) $ do

-- Bounded stack

let s4 = new 4 :: BoundedStack Int

s0 = new 0 :: BoundedStack Int

verify "1.01 capacity new" 4 $ capacity s4

verify "1.02 elements new" [] $ elements s4

assert "1.03 isEmpty new" $ isEmpty s4

assert "1.04 isFull new" $ not $ isFull s4

assert "1.05 isFull new" $ isFull s0

verify "1.06 capacity push" (Just 3) $ capacity <$> push 6 s4

verify "1.07 elements push" (Just [9]) $ elements <$> push 9 s4

verify "1.08 elements push^2" (Just [9,7]) $ elements <$> (push 7 >=> push 9) s4

verify "1.09 push full" Nothing $ push 9 s0

verify "1.10 top push" (Just 7) $ (push 7 >=> top) s4

verify "1.11 top empty" Nothing $ top s0

verify "1.12 isEmpty pop push" (Just True) $ isEmpty <$> (push 7 >=> pop) s4

verify "1.13 isEmpty push" (Just False) $ isEmpty <$> push 7 s4

-- The Maybe type

let half x | even x = Just (x `div` 2)

| otherwise = Nothing

upper x | x `elem` ['a'..'z'] = Just (succ x)

| otherwise = Nothing

noChar = Nothing :: Maybe Char

verify "2.01 mapMaybe []" [] $ mapMaybe half []

verify "2.02 mapMaybe half" [3..6] $ mapMaybe half [6..12]

verify "2.03 mapMaybe upper" "fmmppsme" $ mapMaybe upper "Hello World"

verify "2.04 mapMaybe Nothing" [] $ mapMaybe (const noChar) "goodbye"

verify "2.05 andThen Nothing" Nothing $ Nothing `andThen` half

verify "2.06 andThen Just odd" Nothing $ Just 5 `andThen` half

verify "2.07 andThen Just even" (Just 4) $ Just 8 `andThen` half

-- The Either type

let l5 = Left 5 :: Either Int Char

r5 = Right 5 :: Either Char Int

verify "3.01 exchange left" r5 $ exchange l5

2 of 3 Prof. League – Fall 2017 – Assignment 4 solutions

verify "3.02 exchange right" l5 $ exchange r5

verify "3.03 mapLeft left" (Left 10) $ mapLeft (*2) l5

verify "3.04 mapLeft right" (Right 5) $ mapLeft succ r5

verify "3.05 coalesce left" 10 $ coalesce (Left 10)

verify "3.06 coalesce right" 10 $ coalesce (Right 10)

verify "3.07 mapLeft same as exchange/fmap" (mapLeft (*2) l5) $

(exchange $ fmap (*2) $ exchange l5)

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

assert s = verify s True

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

++ " got " ++ show actual

-- End of test driver

Bounded stack

data BoundedStack a

= BoundedStack { capacity :: Int, elements :: [a] }

deriving (Show, Eq)

new :: Int -> BoundedStack a

new n = BoundedStack { capacity = n, elements = [] }

push :: a -> BoundedStack a -> Maybe (BoundedStack a)

push elem (BoundedStack cap elems)

| cap > 0 = Just $ BoundedStack (cap-1) (elem:elems)

| otherwise = Nothing

pop :: BoundedStack a -> Maybe (BoundedStack a)

pop (BoundedStack cap (_:elems)) =

Just (BoundedStack (cap+1) elems)

pop _ = Nothing

CS695 – Functional Programming – LIU 3 of 3

top :: BoundedStack a -> Maybe a

top (BoundedStack _ (elem:_)) = Just elem

top _ = Nothing

isFull :: BoundedStack a -> Bool

isFull = (<= 0) . capacity

isEmpty :: BoundedStack a -> Bool

isEmpty = null . elements

The Maybe type

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

mapMaybe _ [] = []

mapMaybe f (x:xs) =

case f x of
Nothing -> mapMaybe f xs

Just y -> y : mapMaybe f xs

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

andThen Nothing _ = Nothing

andThen (Just a) f = f a

The Either type

exchange :: Either a b -> Either b a

exchange (Left a) = Right a

exchange (Right b) = Left b

mapLeft :: (a -> b) -> Either a c -> Either b c

mapLeft f (Left a) = Left (f a)

mapLeft _ (Right c) = Right c

Here’s an alternative definition of mapLeft, using the functor fmap (which for the
Either type is essentially a mapRight):

mapLeft2 f = exchange . fmap f . exchange

coalesce :: Either a a -> a

coalesce (Left a) = a

coalesce (Right a) = a

	Test driver
	Bounded stack
	The Maybe type
	The Either type

