
CS695 – Functional Programming – LIU 1 of 6

Assignment 5
due at 23:59 on Wed Oct 11 (80 points)

Save all your functions into one file called a05.hs and submit it to this dropbox.

Higher-order functions

mapFirstRest

Define the function mapFirstRest, with this signature:

mapFirstRest :: (a -> b) -> (a -> b) -> [a] -> [b]

It works like map, in that it applies a function to each element of a list. But unlike map
it takes two separate function parameters, and applies the first function to the first
list element, and the second function to the rest of the list. Here are some examples:

ghci> mapFirstRest (+5) (*5) [7..10]

[12,40,45,50]

ghci> mapFirstRest (+5) (*5) [8,8,8]

[13,40,40]

ghci> mapFirstRest length (const 0) ["Alice", "Bob", "Carol"]

[5,0,0]

ghci> mapFirstRest (+5) id [9,9,9]

[14,9,9]

ghci> mapFirstRest id (+5) [9,9,9]

[9,14,14]

In the above, we’re using idwhich is the identity function. It just returns its argument
exactly as given:

ghci> id 9

9

ghci> id "Hello"

"Hello"

capitalize

Create a function capitalize that will convert the first letter of its string argument
to upper-case.

https://www.dropbox.com/request/hvEWorzHCJSgZ1uKQLye

2 of 6 Prof. League – Fall 2017 – Assignment 5

capitalize :: String -> String

To do that, you should import Data.Char which contains a function toUpper that
works on a single character:

ghci> import Data.Char

ghci> toUpper 'h'

'H'

ghci> toUpper 'G'

'G'

ghci> toUpper '%'

'%'

Use mapFirstRest to apply toUpper appropriately. Here are some sample inputs and
outputs:

ghci> capitalize "hello"

"Hello"

ghci> capitalize "nifty"

"Nifty"

ghci> capitalize "NICE"

"NICE"

ghci> capitalize "#wow"

"#wow"

maybeCapitalize, titleCase

Title case is the name for the capitalization rules typically used in titles and headlines,
where every word is capitalized except articles (the, a), conjunctions (and, but, for),
and prepositions (in, of). But the first word of the sentence is capitalized even if it
is one of these words.

Define these in your solution:

exemptions :: [String]

maybeCapitalize :: String -> String

titleCase :: String -> String

The exemptions should be a list of strings representing words that are exempt from
capitalization in titles:

ghci> "the" `elem` exemptions

True

ghci> "dog" `elem` exemptions

False

CS695 – Functional Programming – LIU 3 of 6

The maybeCapitalize is a function that capitalizes only if the word is not exempt. If
it is exempt, then it just returns the word unchanged. In your definition, you should
use both exemptions and capitalize.

ghci> maybeCapitalize "the"

"the"

ghci> maybeCapitalize "dog"

"Dog"

Finally, titleCase is a function that takes a complete phrase, splits it into words, and
applies capitalization appropriately. Your implementation should use capitalize,
maybeCapitalize, mapFirstRest, words, unwords, and function composition.

The built-in functions words and unwords are great for disassembling a phrase into
a list of words, and then putting it back together again:

ghci> words "the quick brown fox"

["the","quick","brown","fox"]

ghci> unwords ["jumps", "over", "the", "lazy", "dog."]

"jumps over the lazy dog."

Here are some examples for titleCase:

ghci> titleCase "the quick brown fox jumps over the lazy dog"

"The Quick Brown Fox Jumps Over the Lazy Dog"

ghci> titleCase "the hound of the baskervilles"

"The Hound of the Baskervilles"

ghci> titleCase "harry potter and the chamber of secrets"

"Harry Potter and the Chamber of Secrets"

Tree traversal

Using the definition of Tree from the notes on 5 October, define traversals that con-
catenate together all the values in the specified order. Your functions will require
that the type of values stored in the tree forms a monoid.

preorder :: Monoid a => Tree a -> a

inorder :: Monoid a => Tree a -> a

postorder :: Monoid a => Tree a -> a

At each node:

• pre-order outputs the node first, then left, then right
• in-order outputs left, then the current node, then right

N20171005.html

4 of 6 Prof. League – Fall 2017 – Assignment 5

• post-order outputs left, then right, then finally the current node

Here are traversals on the tree defined sample1 in the notes (and a reminder of what
that tree contains).

ghci> printTree sample1

- "A"

|- "K"

| |- "M"

| | |- *

| | |- "Q"

| |- "P"

|- *

ghci> preorder sample1

"AKMQP"

ghci> inorder sample1

"MQKPA"

ghci> postorder sample1

"QMPKA"

Stackmonoid

Using the BoundedStack data type from the Assignment 4 solutions, define it as an
instance of Monoid. Unlike the tree, it should not require that the element type is
also a Monoid. Here is the first line of the instance definition:

instance Monoid (BoundedStack a) where

and then you add the definitions of mempty and mappend.

To append two stacks, you should combine together their capacities and place all the
elements in the left stack before all the elements in the right stack. Here are some
examples:

ghci> Just s1 = push 7 (new 3)

ghci> Just s2 = (push 8 >=> push 9) (new 2)

ghci> s1 <> s2

BoundedStack {capacity = 2, elements = [7,9,8]}

ghci> s2 <> mempty

BoundedStack {capacity = 0, elements = [9,8]}

ghci> mempty <> s1

BoundedStack {capacity = 2, elements = [7]}

Remember that <> is an operator shorthand for mappend.

a04sol.html

CS695 – Functional Programming – LIU 5 of 6

Test code

import Data.Monoid

import Data.Char

import Control.Monad.State

main = do
flip execStateT (0,0) $ do

-- mapFirstRest

verify "1.01" [12,40,45,50] $ mapFirstRest (+5) (*5) [7..10]

verify "1.02" [13,40,40] $ mapFirstRest (+5) (*5) [8,8,8]

verify "1.03" [5,0,0] $ mapFirstRest length (const 0)

["Alice", "Bob", "Carol"]

verify "1.04" [14,9,9] $ mapFirstRest (+5) id [9,9,9]

verify "1.05" [9,14,14] $ mapFirstRest id (+5) [9,9,9]

-- capitalize

verify "2.01" "Hello" $ capitalize "hello"

verify "2.02" "Nifty" $ capitalize "nifty"

verify "2.03" "NICE" $ capitalize "NICE"

verify "2.04" "#wow" $ capitalize "#wow"

-- maybeCapitalize

assert "3.01" $ "the" `elem` exemptions

assert "3.02" $ not $ "dog" `elem` exemptions

verify "3.03" "the" $ maybeCapitalize "the"

verify "3.04" "Dog" $ maybeCapitalize "dog"

verify "3.05" "The Quick Brown Fox Jumps Over the Lazy Dog"

$ titleCase "the quick brown fox jumps over the lazy dog"

verify "3.06" "The Hound of the Baskervilles"

$ titleCase "the hound of the baskervilles"

verify "3.07" "Harry Potter and the Chamber of Secrets"

$ titleCase "harry potter and the chamber of secrets"

-- tree traversal

verify "4.01" "AKMQP" $ preorder sample1

verify "4.02" "MQKPA" $ inorder sample1

verify "4.03" "QMPKA" $ postorder sample1

verify "4.04" "BSCDFR" $ preorder sample2

verify "4.05" "SDCFBR" $ inorder sample2

verify "4.06" "DFCSRB" $ postorder sample2

-- stack monoid

let Just s1 = push 7 (new 3)

let Just s2 = (push 8 >=> push 9) (new 2)

verify "5.01" (BoundedStack {capacity = 2, elements = [7,9,8]})

$ s1 <> s2

verify "5.02" s2 $ s2 <> mempty

verify "5.03" s1 $ mempty <> s1

6 of 6 Prof. League – Fall 2017 – Assignment 5

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

assert s = verify s True

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

++ " got " ++ show actual

-- End of test driver

	Higher-order functions
	mapFirstRest
	capitalize
	maybeCapitalize, titleCase

	Tree traversal
	Stack monoid
	Test code

