
CS695 – Functional Programming – LIU 1 of 5

Assignment 6
due at 23:59 on Wed Nov 1 (80 points)

Save all your functions into one file called a06.hs and submit it to this dropbox.

Type classes

In the notes, we defined types for Circle and Rectangle that were instances of this
Shape class:

class Shape a where
area :: a -> Float

bump :: a -> a

1. Write a data definition for a Triangle class, with a constructor also called Triangle.
Its arguments should be six Float values, representing the x, y coordinates of the
triangle’s three vertices. Your definition should automatically derive the instances
for Show and Eq.

2. Instantiate the Shape class for the Triangle type. To compute the area of a triangle,
use the formula at http://www.mathopenref.com/coordtrianglearea.html. (Of-
ten you’ll see the area of a triangle written as bh

2
where b is the length of the base

and h is the height. But that formula presumes that you know the base and height,
which can be difficult to calculate from three arbitrary coordinates.)

Here are some examples using Triangle with the two functions in Shape:

ghci> area (Triangle 15 15 30 25 15 35)

150.0

ghci> area (Triangle 25 15 31 (-5) 41 40)

235.0

ghci> bump (Triangle 25 15 31 (-5) 41 40)

Triangle {ax = 26.0, ay = 16.0, bx = 32.0, by = -4.0, cx = 42.0, cy = 41.0}

You can compare your area results to those given by the interactive gadget on the
page I linked for the formula.

3. Just like the Monoid type class has some associated laws that instances should obey,
we can define a law for Shape: the area of a shape should not be affected by bumping
it to a new position! Encode that law as a Boolean function that works on any Shape
instance:

bumpPreservesArea :: Shape a => a -> Bool

https://www.dropbox.com/request/ArGRouVcKENIGDVNEsPc
http://www.mathopenref.com/coordtrianglearea.html

2 of 5 Prof. League – Fall 2017 – Assignment 6

You will compare the area to the ‘bumped’ area, and if they are “close enough”, return
True. (Close enough can be defined as the absolute value of the difference should be
less than 0.001, for example.)

ghci> bumpPreservesArea (Circle 3.4 5.5 1.8)

True

ghci> bumpPreservesArea (Rectangle 3 5 8 9)

True

ghci> bumpPreservesArea (Triangle 0 0 1 9 2 10)

True

Laziness

Here we will use laziness to create and process (potentially) infinite data structures.

4. Create a function powersOf with the following signature that generates all the non-
negative integer powers of the given base.

powersOf :: Num a => a -> [a]

Here are examples of the powers of two and powers of three:

ghci> take 10 $ powersOf 2

[1,2,4,8,16,32,64,128,256,512]

ghci> take 10 $ powersOf 3

[1,3,9,27,81,243,729,2187,6561,19683]

ghci> powersOf 3 !! 20

3486784401

5. Create a function mergewith the following signature. It will take two lists of ordered
elements – each list should be in sorted order already. Then itwillmerge the elements
together into a new list,maintaining sorted order.

merge :: Ord a => [a] -> [a] -> [a]

Here is an example with finite lists:

ghci> merge [3,7,18] [2,8,10,24]

[2,3,7,8,10,18,24]

But it should also work if one of the lists is infinite (note that 16 appears twice in the
result, because it’s in the range [10..20] and it’s a power of two):

ghci> take 20 $ merge [10..20] (powersOf 2)

[1,2,4,8,10,11,12,13,14,15,16,16,17,18,19,20,32,64,128,256]

CS695 – Functional Programming – LIU 3 of 5

Or if both lists are infinite:

ghci> take 20 $ merge (powersOf 3) (powersOf 2)

[1,1,2,3,4,8,9,16,27,32,64,81,128,243,256,512,729,1024,2048,2187]

Threading state

6. In the notes for 19 October, we wrote a function preorderState to thread a state
through a pre-order tree traversal.

preorderState :: (a -> s -> (b,s)) -> Tree a -> s -> (Tree b, s)

preorderState gen Leaf s0 = (Leaf, s0)

preorderState gen (Branch value left right) s0 =

(Branch newValue newLeft newRight, s3)

where (newValue, s1) = gen value s0

(newLeft, s2) = preorderState gen left s1

(newRight, s3) = preorderState gen right s2

Change that to make postorderState on the same Tree type. It should behave like
this:

ghci> printTree sample1

- "A"

|- "K"

| |- "M"

| | |- *

| | |- "Q"

| |- "P"

|- *

ghci> (t0, _) = postorderState withCounter sample1 1

ghci> printTree t0

- ("A",5)

|- ("K",4)

| |- ("M",2)

| | |- *

| | |- ("Q",1)

| |- ("P",3)

|- *

ghci> (t0, _) = postorderState inject sample1 "Z"

ghci> printTree t0

- "K"

|- "P"

| |- "Q"

4 of 5 Prof. League – Fall 2017 – Assignment 6

| | |- *

| | |- "Z"

| |- "M"

|- *

where inject, withCounter, printTree, and so forth are defined as in the notes.

Test code

import Control.Monad.State

main = flip execStateT (0,0) $ do
-- Triangles

let t0 = Triangle 15 15 30 25 15 35

t1 = Triangle 25 15 31 (-5) 41 40

verifyF "1.01" 150 $ area t0

verifyF "1.02" 235 $ area t1

verify "1.03" (Triangle 26 16 32 (-4) 42 41) $ bump t1

assert "1.04" $ bumpPreservesArea t0

assert "1.05" $ bumpPreservesArea t1

-- powersOf

verify "2.01" [128,256,512,1024,2048,4096] $ take 6 $ drop 7 $ powersOf 2

verify "2.02" [729,2187,6561,19683] $ take 4 $ drop 6 $ powersOf 3

verify "2.03" [1,5,25,125,625] $ take 5 $ powersOf 5

-- merge

verify "3.01" [2,3,7,8,10,18,24] $ merge [3,7,18] [2,8,10,24]

verify "3.02" [1,2,4,5,6,7,8,8,16,32] $ take 10 $ merge [5..8] (powersOf 2)

verify "3.03" [64,81,128,243,256,512,729,1024] $ take 8 $ drop 10

$ merge (powersOf 3) (powersOf 2)

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

assert s = verify s True

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

CS695 – Functional Programming – LIU 5 of 5

++ " got " ++ show actual

-- End of test driver

	Type classes
	Laziness
	Threading state
	Test code

