
CS695 – Functional Programming – LIU 1 of 4

Assignment 6 solutions

Test driver

import Control.Monad.State

main = flip execStateT (0,0) $ do
-- Triangles

let t0 = Triangle 15 15 30 25 15 35

t1 = Triangle 25 15 31 (-5) 41 40

verifyF "1.01" 150 $ area t0

verifyF "1.02" 235 $ area t1

verify "1.03" (Triangle 26 16 32 (-4) 42 41) $ bump t1

assert "1.04" $ bumpPreservesArea t0

assert "1.05" $ bumpPreservesArea t1

-- powersOf

verify "2.01" [128,256,512,1024,2048,4096] $ take 6 $ drop 7 $ powersOf 2

verify "2.02" [729,2187,6561,19683] $ take 4 $ drop 6 $ powersOf 3

verify "2.03" [1,5,25,125,625] $ take 5 $ powersOf 5

-- merge

verify "3.01" [2,3,7,8,10,18,24] $ merge [3,7,18] [2,8,10,24]

verify "3.02" [1,2,4,5,6,7,8,8,16,32] $ take 10 $ merge [5..8] (powersOf 2)

verify "3.03" [64,81,128,243,256,512,729,1024] $ take 8 $ drop 10

$ merge (powersOf 3) (powersOf 2)

where
say = liftIO . putStrLn

correct (k, n) = (k+1, n+1)

incorrect (k, n) = (k, n+1)

assert s = verify s True

verify :: (Show a, Eq a) => String -> a -> a -> StateT (Int,Int) IO ()

verify = verify' (==)

verifyF = verify' (\x y -> abs(x-y) < 0.00001)

verify' :: (Show a) => (a -> a -> Bool) -> String -> a -> a ->

StateT (Int,Int) IO ()

verify' eq tag expected actual

| eq expected actual = do
modify correct

say $ " OK " ++ tag

| otherwise = do
modify incorrect

say $ "ERR " ++ tag ++ ": expected " ++ show expected

++ " got " ++ show actual

-- End of test driver



2 of 4 Prof. League – Fall 2017 – Assignment 6 solutions

Type classes

In the notes, we defined types for Circle and Rectangle that were instances of this
Shape class:

class Shape a where
area :: a -> Float

bump :: a -> a

Here is a definition for a triangle, in terms of the coordinates of its three vertices:

data Triangle = Triangle { ax, ay, bx, by, cx, cy :: Float }

deriving (Show, Eq)

Instantiate the Shape class for the Triangle type. To compute the area of a triangle,
use the formula at http://www.mathopenref.com/coordtrianglearea.html. (Of-
ten you’ll see the area of a triangle written as bh

2
where b is the length of the base

and h is the height. But that formula presumes that you know the base and height,
which can be difficult to calculate from three arbitrary coordinates.

instance Shape Triangle where
area (Triangle ax ay bx by cx cy) =

abs ((ax*(by-cy) + bx*(cy-ay) + cx*(ay-by))/2)

bump (Triangle ax ay bx by cx cy) =

Triangle (ax+1) (ay+1) (bx+1) (by+1) (cx+1) (cy+1)

Just like the Monoid type class has some associated laws that instances should obey,
we can define a law for Shape: the area of a shape should not be affected by bumping
it to a new position! We can encode that as a generic function on any instance:

bumpPreservesArea :: Shape a => a -> Bool

bumpPreservesArea shape =

closeEnough (area shape) (area (bump shape))

where closeEnough n1 n2 = abs (n1 - n2) < 0.0001

Here are some examples:

data Circle = Circle { centerX, centerY, radius :: Float }

deriving Show

data Rectangle = Rectangle { x1, y1, x2, y2 :: Float }

deriving Show

http://www.mathopenref.com/coordtrianglearea.html


CS695 – Functional Programming – LIU 3 of 4

instance Shape Circle where
area (Circle x y r) = pi * r * r

bump (Circle x y r) = Circle (x+1) (y+1) r

instance Shape Rectangle where
area (Rectangle x1 y1 x2 y2) = abs (x1 - x2) * abs (y1 - y2)

bump (Rectangle x1 y1 x2 y2) = Rectangle (x1+1) (y1+1) (x2+1) (y2+1)

�> bumpPreservesArea (Circle 3.4 5.5 1.8)

True

�> bumpPreservesArea (Rectangle 3 5 8 9)

True

�> bumpPreservesArea (Triangle 0 0 1 9 2 10)

True

Laziness

powersOf :: Num a => a -> [a]

powersOf n = map (n^) [0..]

merge :: Ord a => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

runningSums xs = 0 : zipWith (+) xs (runningSums xs)

Threading state

postorderState :: (a -> s -> (b,s)) -> Tree a -> s -> (Tree b, s)

postorderState gen Leaf s0 = (Leaf, s0)

postorderState gen (Branch value left right) s0 =

(Branch newValue newLeft newRight, s3)

where (newLeft, s1) = postorderState gen left s0

(newRight, s2) = postorderState gen right s1

(newValue, s3) = gen value s2

prettyPrint :: Show a => String -> Tree a -> String

prettyPrint indent Leaf = indent ++ "- *\n"

prettyPrint indent (Branch v Leaf Leaf) =

indent ++ "- " ++ show v ++ "\n"



4 of 4 Prof. League – Fall 2017 – Assignment 6 solutions

prettyPrint indent (Branch v l r) =

indent ++ "- " ++ show v ++ "\n" ++ prettyPrint tab l ++ prettyPrint tab r

where tab = indent ++ " |"

printTree :: Show a => Tree a -> IO ()

printTree = putStrLn . prettyPrint ""

data Tree a

= Leaf

| Branch { value :: a, left, right :: Tree a }

deriving (Show)

And here’s a sample tree we used before:

sample1 :: Tree String

sample1 =

Branch "A"

(Branch "K"

(Branch "M"

Leaf

(Branch "Q" Leaf Leaf))

(Branch "P" Leaf Leaf))

Leaf

data Seed = Seed { unSeed :: Integer }

deriving (Eq, Show)

rand :: Seed -> (Integer, Seed)

rand (Seed s) = (s', Seed s')

where
s' = (s * 16807) `mod` 0x7FFFFFFF

withCounter :: a -> Int -> ((a, Int), Int)

withCounter value n = ((value, n), n+1)

inject :: a -> a -> (a, a)

inject value next = (next, value)


	Test driver
	Type classes
	Laziness
	Threading state

