CS695 - Functional Programming — LIU 10f8

Assignment 7

due at 23:59 on Wed Nov 8 (80 points)

For this assignment, we will translate some arithmetic expressions into monadic
style. This will enable the calculations to be run in different monads to produce dif-
ferent effects.

Start by placing these language extension codes at the very top of your a@7. hs file:

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexiblelInstances #-}
{-# LANGUAGE FlexibleContexts #-}

The Haskell language and GHC compiler support many different language exten-
sions that enable particular capabilities. These are not typically enabled by default
because they have particular trade-offs that may not be appropriate for every pro-
gram and development environment. But in most cases, there’s no harm in turning
on an extension if you need one.

Following those language extensions, add these import statements:

import Control.Monad.Writer
import Control.Monad.State
import Control.Monad.Identity

You should have all those installed already because they are part of the mt1 package.

Now we’ll define a class for monads that support integer arithmetic. That is, they’ll
have addition, multiplication, and division; but the answers will be returned within
a monad m:

class Monad m => ArithMonad m where

add :: Integer -> Integer -> m Integer
mult :: Integer -> Integer -> m Integer
divi :: Integer -> Integer -> m Integer

Using these monadic arithmetic operations is a little more tedious than the typical
definitions, because each operation needs to be sequenced using “bind” (>>=). Let’s
see what it takes to implement a monadic function to compute 2x + 1:

twiceAndOne x = do
twiceX <- mult 2 x
add twiceX 1



20f8 Prof. League - Fall 2017 - Assignment 7

We used the do notation to sequence the two monad operations in the right order:
mult and then add. Note that you can’'t compose them normally, as in add (mult 2
x) 1, because the subexpression mult 2 x doesn’t produce an integer directly, but
rather a monad-wrapped integer. So it requires a monadic bind. Instead of do nota-
tion, we could have used (>>=) directly:

twiceAndOneA x = mult 2 x >>=\y -> add 1 y

And you may recognize that the lambda function \y -> add 1 y canbe eta-reduced
to allow this shortcut:

twiceAndOneB x = mult 2 x >>= add 1

That’s pretty clean and convenient. Recall that the bind operator (>>=) is some-
times pronounced “andThen”, so this function reads pretty easily as “multiply 2 by
x andThen add 1" When we have longer expressions to implement though, the do
notation may be the clearest option.

Now it’s your turn. Write a function called grak that takes two arguments x and y,
and calculates 3x% + 2xy + 4y? — 5. It must use the mult and add operators, so that

its type is:

grak :: ArithMonad m => Integer -> Integer -> m Integer

No frills: the identity monad

Now we'd like to test our functions written using ArithMonad. It won'’t really work to
call them directly in GHCI, because there are no concrete instances of ArithMonad:

ghci> twiceAndOne 13
<interactive>:2:1: error:
- Ambiguous type variable ‘m@’ arising from a use of ‘print’
prevents the constraint ‘(Show (m@ Integer))’ from being solved.

So let’s provide the simplest instance. We imported Control.Monad.Identity. This
defines a monad that adds nothing at all to the computation. Return just returns the
value; bind just calls the function. But we need to define how to add/multiply/divide
within the identity monad, like this:

instance ArithMonad Identity where
add x y = return (xty)
mult x y = return (xxy)
divi x y = return (div x y)


N20171012.html
N20171026.html#monad-operations
N20171026.html#monad-operations

CS695 - Functional Programming — LIU 30f8

Now you can run any generic ArithMonad computation within the Identity monad
like this:

ghci> runldentity $ twiceAndOne 13
27

ghci> runIdentity $ twiceAndOne 82
165

So try it also with your grak function. Here’s what I get:

ghci> runldentity $ grak 3 8
326
ghci> runIdentity $ grak 6 4
215

Logging with the writer monad

Now we’ll create a new instance of ArithMonad that keeps a log of each operation
that is performed. Then we can print the log. Recall that the Writer monad uses a
monoid (in this case, String) and an operation tell to append something to the log:

instance ArithMonad (Writer String) where

add x y = do
tell $ show x ++ " + " ++ show y ++ "\n”
return (x+y)

mult x y = do
tell $ show x ++ " * " ++ show y ++ "\n”
return (x*y)

divi x y = do
tell $ show x ++ " / " ++ show y ++ "\n”
return (div x y)

The return portion is the same as for the Identity instance, but now we’re using
tell to assemble a log entry. We can run our previous computations in the writer
monad like this:

ghci> runWriter $ twiceAndOne 82 :: (Integer, String)
(165,"2 * 82\n164 + 1\n")

We get the same result (165) but it’s paired with a string that represents the log of
all the calculations: 2x82 and then 164+1. But there are two inconvenient things
about this: first, we had to specify the type : : (Integer, String) to getitto work.
Second, the format of the log is pretty awkward, with the embedded \n newline char-
acters.

Here’s a function that will streamline our usage of the writer monad for arithmetic:



40f8 Prof. League - Fall 2017 - Assignment 7

runLog action = do
let (result, log) = runWriter action
putStr log
return result

And its usage:

ghci> runLog $ twiceAndOne 82
2 % 82

164 + 1

165

Much more convenient! The two lines showing the arithmetic are output by the
putStr from the log. The last line showing the result is just the answer returned by
runLog.

Here’s a log of the operations executed during a call to grak:

ghci> runLog $ grak 6 4

6 x 6

3 % 36

6 * 4

2 x 24

4 x 4
* 16

108 + 48

156 + 64

220 + -5

215

Your code should have the same final answer, although the sequencing of operations
may differ slightly — there are several orderings that still produce correct answers.

Exponentiation, fast and slow

We have addition, multiplication, and division, but suppose we want to implement
integer exponentiation (xV). Instead of adding it to ArithMonad directly, we can just
implement it using the existing operations.

The simplest way to think of exponentiation is just as iterated multiplication. So
here’s a non-monadic version of it:

1
x * slowExp x (y-1)

slowExp _ 0
slowExp x y



CS695 - Functional Programming — LIU 50f8

So if you trace that to calculate 2°, you'll see:

slowExp 2 5 =

2 * slowExp 2 4 =

2 * 2 x slowExp 2 3 =

2 x 2% 2 % slowkExp 2 2 =

2 % 2% 2% 2 % slowExp 2 1 =
2% 2% 2% 2% 2 % slowExp 2 @ =
2% 2% 2% 2% 2% 1=

2% 2% 2% 2% 2=

2 %2 % 2% 4=

2 2 %8 =

2 * 16 =

w
N

If we convert this recursive function into monadic style using ArithMonad, it looks
like this:

slowExpM _ @ = return 1
slowExpM x y = do
yMinus1 <- add y (-1)
recurse <- slowExpM x yMinus1
mult x recurse

and then we can run it in either monad:

ghci> runldentity $ slowExpM 2 5
32

ghci> runLog $ slowExpM 2 5

5+ -1

+
|
—_

N NN DNDDN =2 N WS
* % % % ok 4+ 4+ +

w
N

The log of operations should match what we calculated in our manual trace of the
code.

The slowExp functions are /inear in the size of the exponent, so large exponents will
require quite a lot of multiplications. Fortunately, there’s a much faster way to do
exponentiation. Here’s the algorithm in direct (non-monadic) style:



60f8 Prof. League - Fall 2017 - Assignment 7

fastExp _ 0 =1

fastExp x y
| even y = fastExp (x*x) (div y 2)
| otherwise = x * fastExp x (y-1)

And a trace of how it works:

fastExp 2 5 =

* fastExp 2 4 =
fastExp
fastExp 16 1 =

16 * fastExp 16 0 =
16 x 1 =

16 =

NN NN NN
N
()
1

* % % % %

32

So whenever the exponent is even, we can bypass a lot of multiplications by squaring
the base and dividing the exponent by two.

Now it’s your turn. Convert the fast exponentiation algorithm into monadic style
using return and do notation. Call it fastExpM. It should work like this:

ghci> runldentity $ fastExpM 2 5
32

ghci> runLog $ fastExpM 2 5

5+ -1

N A BN
+ N X N %
I

1
16 * 1

2 x 16

32

ghci> runldentity $ fastExpM 14 28
123476695691247935826229781856256
ghci> runLog $ fastExpM 14 28

14 % 14

28 / 2

196 x 196

14 / 2

7+ -1

38416 * 38416

6/ 2

3+ -1



CS695 - Functional Programming — LIU 7 of 8

1475789056 * 1475789056

2/ 2

1T+ -1

2177953337809371136 * 1

1475789056 * 2177953337809371136
38416 * 3214199700417740936751087616
123476695691247935826229781856256

Counting with state monad

Instead of generating the complete log of operations like we did with Writer, we
could gauge the efficiency of a numerical algorithm just by counting the number of
operations. The State monad is a good choice for that.

instance ArithMonad (State Int) where

You should complete this instance. It looks a lot like the instance for Writer, except
that instead of the tell and show stuff before the return, just simply do modify
succ.

The modify is a convenient operation on the state monad; here is its type specialized
to an integer state, like we’re using:

modify :: (Int -> Int) -> State Int ()

Then succ is just a function on integers (or any enumerable type) that returns the
next one. So the overall effect of modify succ within the State monad is pretty
much the same as something like i++ to increment a counter in C++/Java.

Once you have the State instance of ArithMonad working, you should be able to do
this:

runCount :: State Int a -> (a, Int)
runCount action = runState action 0

ghci> runCount $ slowExpM 2 5

(32,10)

ghci> runCount $ fastExpM 2 5

(32,8)

ghci> runCount $ slowExpM 14 28
(123476695691247935826229781856256,56)
ghci> runCount $ fastExpM 14 28
(123476695691247935826229781856256,14)



80f8 Prof. League - Fall 2017 - Assignment 7

So runCount returns a pair. The first element is the answer, and the second is the
number of operations it took to calculate the answer. You can really see the difference
in efficiency between fast and slow exponentiation of 1428,

Submit your a@7. hs to this dropbox.


https://www.dropbox.com/request/tokl1cp1fxlztFeXSZK4

	No frills: the identity monad
	Logging with the writer monad
	Exponentiation, fast and slow
	Counting with state monad

