
CS695 – Functional Programming – LIU 1 of 3

Assignment 11
due at 23:59 on Fri Dec 15 (80 points)

For this assignment, you will use test frameworks to compose tests for the parser in
assignment 9. You can refer to the A9 solutions.

Before starting, make sure you have installed all the stack packages specified at the
top of the recent notes page, as well as:

stack install tasty-th

Your file a11.hs will then begin with this header:

{-# LANGUAGE TemplateHaskell #-}

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE NoMonomorphismRestriction #-}

import Data.Maybe (fromMaybe)

import Data.Either (isLeft)

import Text.Parsec

import Test.QuickCheck (quickCheck)

import Test.Tasty.HUnit

import Test.Tasty.QuickCheck

import Test.Tasty.TH

Themodule Test.Tasty.TH uses a feature called TemplateHaskell to generate code
for you. This sometimes goes by the name of “metaprogramming”. It can accumu-
late all of the definitions from your file with names beginning with case_ or prop_,
incorporating them into a test tree structure. Use it like this:

case_simple_test = 1+1 @?= 2

case_another_test = 2+2 @?= 4

main = $(defaultMainGenerator)

The $(...) syntax is part of TemplateHaskell. The defaultMainGenerator, defined
in Test.Tasty.TH, expands to a function like the runTestswewrotemanually in the
notes. Here’s the result:

ghci> main

Main

simple test: OK

another test: OK

a9sol.html
N20171207.html

2 of 3 Prof. League – Fall 2017 – Assignment 11

All 2 tests passed (0.00s)

*** Exception: ExitSuccess

Now that you know how to create tests, it’s your job to write and run tests of the
parseInt and parseFloat functions from assignment 9. Here are some further re-
quirements.

1. You should write at least three QuickCheck properties. One example would be to
generate random integers, convert them to strings using show, and then try to parse
them. The result should be a string that’s the same as the show representation. You
can repeat that for floats to get a second QuickCheck property.

2. Another QuickCheck idea is to generate integers (or floats) and add some leading
or trailing garbage characters (not numbers) to them. Then you will verify that the
parse fails! Remember, parsers return an Either type, where Right is successful and
Left is a failure. You can compare to Right using == or === (or @?= in HUnit) but if
you’re expecting a Left result (a failed parse) then you may instead want to use the
isLeft function:

ghci> run parseInteger " 323 " == Right "323"

True

ghci> isLeft (run parseInteger " x119")

True

3. Finally, you should include HUnit tests for all of the parsing-related test cases in the
original test driver for assignment 9. That is, the tests labeled 5.01 through 5.13.

Pulling all of these together with Tasty’s defaultMainGenerator, here is the output
of my program:

ghci> main

Main

int parseable: OK

+++ OK, passed 100 tests.

float parseable: OK

+++ OK, passed 100 tests.

int leading spaces: OK

+++ OK, passed 100 tests.

int trailing spaces: OK

+++ OK, passed 100 tests.

int fails trailing garbage: OK

+++ OK, passed 100 tests.

int is float: OK

neg int: OK

CS695 – Functional Programming – LIU 3 of 3

dec point: OK

decimal digits: OK

negative decimal: OK

exp wo decimal: OK

negative exp: OK

negative w negative exp: OK

decimals and exp: OK

larger decimals exp: OK

neg in middle: OK

empty before decimal: OK

missing exp: OK

All 18 tests passed (0.01s)

*** Exception: ExitSuccess

Very nice! You can also run the tests outside of GHCi by just writing this on your
regular command prompt:

stack runghc a11.hs

Run this way, your test program also can handle command-line arguments:

stack runghc a11.hs --help

And it should display results in color, depending on your terminal settings.

Submit your a11.hs to this dropbox: https://www.dropbox.com/request/

WszOYjJO3g6rQZn1odIa

https://www.dropbox.com/request/WszOYjJO3g6rQZn1odIa
https://www.dropbox.com/request/WszOYjJO3g6rQZn1odIa

