
CS695 – Functional Programming – LIU 1 of 5

Sample midterm questions
26 October 2017

You have one hour to complete these questions. Answer on the paper given. If you
need additional paper let me know, but you must turn it in also. You may not use a
computer or calculator. All notes and electronic devices must be put away.

thwok 'a' = 'y'

thwok 'n' = 'z'

thwok 'm' = 'g'

thwok _ = 's'

1. The preceding function definition, thwok, uses pattern matching on characters.
What is the result of each of these expressions?

a. thwok 'm'→
b. thwok 'y'→
c. map thwok "panama"→

2. Write down a type signature for thwok.

flim x

| even x = 2*x + 1

| x > 10 = 3*x - 2

| otherwise = x + 1

3. The preceding function, flim, uses Boolean guards to distinguish three cases. What
is the result of each of these expressions?

a. flim 2→
b. flim 11→
c. flim 3→
d. map flim [8..12]→



2 of 5 Prof. League – Fall 2017 – Sample midterm questions

square x = x*x

eek y 0 = 1

eek y z

| even z = eek (square y) (z `div` 2)

| otherwise = y * eek y (z - 1)

4. Use the preceding functions, square and eek, to derive the result of the following
expression. square does exactly what it says. eek is recursive and uses both pattern-
matching (on zero) and guards.

eek 3 5→

grup :: [Integer] -> [Integer]

grup = filter (< 20)

bink :: [Integer] -> Integer

bink = sum . grup . take 5

bonk :: [Integer] -> Integer

bonk = sum . take 5 . grup

5. The preceding functions are defined using partial application and function compo-
sition. What is the result of each of these expressions?

a. bink [80,13,92,19,15,-7]→
b. bonk [80,13,92,19,15,-7]→
c. bink []→
d. bonk [18..25]→



CS695 – Functional Programming – LIU 3 of 5

6. Recall that a type is a Functor if it has a function fmap that can apply a function to
its element type(s). For lists, fmap is the same as map. But fmap also works on Maybe

types, the Right side of an Either type, and the second element in a pair. That is, we
have all these instances:

fmap :: (a -> b) -> [a] -> [b]

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap :: (a -> b) -> Either c a -> Either c b

fmap :: (a -> b) -> (c, a) -> (c, b)

What is the result of each of these expressions?

a. fmap (*2) (Just 5)→
b. fmap (*2) (Left 5)→
c. fmap (*2) (Right 5)→
d. fmap (*2) (5,6)→
e. fmap (+1) $ fmap (*2) [1..4]→

pelt :: [Integer] -> [Integer]

pelt [] = [0]

pelt (h:t) = h : h : pelt t

7. The preceding function, pelt, is recursive and uses pattern-matching on a list argu-
ment. What is the result of each of these expressions?

a. pelt []→
b. pelt [6]→
c. pelt [7,2]→



4 of 5 Prof. League – Fall 2017 – Sample midterm questions

korn :: String -> String

korn = zipWith max "jjjjj"

8. The preceding function, korn, is defined as a partial application using zipWith and
max. Recall that max returns the greater of its two arguments:

• max 3 5→ 5

• max 'a' 'b'→ 'b'

• max 'z' 'k'→ 'z'

What is the result of each of these expressions?

a. korn "hello"→
b. korn "quiz"→
c. korn "haskell"→

main = putStrLn "All done!"

Extra questions

The above indicates the approximate length of the real exam, but here are some ad-
ditional practice questions.

quan :: [a] -> [a]

quan [] = []

quan (h:t) = quan t ++ [h]

9. Recall that (++) is the list concatenation operator.

• "test" ++ "two"→ "testtwo"

• [1..5] ++ [8..10]→ [1,2,3,4,5,8,9,10]

What is the result of each of these expressions?

a. quan "hello"→
b. quan [2..5]→



CS695 – Functional Programming – LIU 5 of 5

twee :: [Integer] -> [Integer]

twee = map (+3)

florm :: [Integer] -> [Integer]

florm = filter even

pink :: [Integer] -> Integer

pink = sum . florm . twee

ponk :: [Integer] -> Integer

ponk = sum . twee . florm

punk :: [Integer] -> Integer

punk = sum . twee . florm . twee

10. The preceding functions are defined using partial application and function compo-
sition. What is the result of each of these expressions?

a. pink [4..7]→
b. ponk [4..7]→
c. punk [4..7]→


	Extra questions

