Formal Methods
[Rough notes]
Treating software, or specifications of software, as mathematical objects, so we can prove theorems about them.
- Model checking specifications with TLA+ Toolbox. TLA = Temporal Logic of Actions. [Leslie Lamport] – Sample specification of a bank account transfer
- Program logics in a proof assistant (Coq) [my example below].
Inductive nat : Type := | Z : nat | S : nat -> nat. Inductive even : nat -> Prop := | evZ : even Z | evS : forall n:nat, even n -> even (S(S n)). Theorem six_even: even(S(S(S(S(S(S Z)))))). Proof. apply evS. apply evS. apply evS. apply evZ. Qed. Fixpoint plus (n:nat) (m:nat): nat := match n with | Z => m | S k => S (plus k m) end. Eval compute in plus (S(S Z)) (S(S(S Z))). Theorem ev_plus_ev_is_ev: forall n m : nat, even n -> even m -> even (plus n m). Proof. intros n m EN EM. induction EN as [|n2 EN2]. simpl. exact EM. simpl. apply evS. exact IHEN2. Qed. Inductive odd : nat -> Prop := | odd1: odd (S Z) | oddS: forall n:nat, odd n -> odd(S(S n)). Lemma succ_odd_is_even: forall n:nat, odd n -> even (S n). Proof. intros n OddN. induction OddN. apply evS. apply evZ. apply evS. exact IHOddN. Qed.